Deep Multiview Heartwave Authentication
This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for cla...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2019-02, Vol.15 (2), p.777-786 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 2 |
container_start_page | 777 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Lim, Chin Leng Peter Woo, Wai Lok Dlay, Satnam S. Wu, Di Gao, Bin |
description | This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable. |
doi_str_mv | 10.1109/TII.2018.2874477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485298</ieee_id><sourcerecordid>2177334846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</originalsourceid><addsrcrecordid>eNo9kE1LA0EMhgdRsFbvgpeCB09bk81MJ3ss9aOFipd6HqbTLG6p3To7W_Hfu6XFU17I8ybwKHWLMESE4nExmw1zQB7mbLW29kz1sNCYARg477IxmFEOdKmummYNQBao6KmHJ5Hd4K3dpGpfyc9gKj6mH7-XwbhNn7JNVfCpqrfX6qL0m0ZuTrOvPl6eF5NpNn9_nU3G8ywQUcos-xKN4BL1qgiGwDMyGAwciJc2kBFLbMCPAoxWUnoDmtmzLbjbhBH11f3x7i7W3600ya3rNm67ly5Ha4k06wMFRyrEummilG4Xqy8ffx2CO-hwnQ530OFOOrrK3bFSicg_zppNXjD9AWeFWWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177334846</pqid></control><display><type>article</type><title>Deep Multiview Heartwave Authentication</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</creator><creatorcontrib>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</creatorcontrib><description>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2874477</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Belief networks ; Classification ; deep belief network (DBN) ; deep learning ; discrete wavelet transformation (DWT) ; Discrete wavelet transforms ; Feature extraction ; Heart rate ; heartwave ; Informatics ; multiview spectrum ; Network reliability ; Physical exercise ; Reliability ; Senior citizens ; Signal classification ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2019-02, Vol.15 (2), p.777-786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</citedby><cites>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</cites><orcidid>0000-0003-3377-6895 ; 0000-0002-8698-7605 ; 0000-0002-6841-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Chin Leng Peter</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Dlay, Satnam S.</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><title>Deep Multiview Heartwave Authentication</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</description><subject>Authentication</subject><subject>Belief networks</subject><subject>Classification</subject><subject>deep belief network (DBN)</subject><subject>deep learning</subject><subject>discrete wavelet transformation (DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>heartwave</subject><subject>Informatics</subject><subject>multiview spectrum</subject><subject>Network reliability</subject><subject>Physical exercise</subject><subject>Reliability</subject><subject>Senior citizens</subject><subject>Signal classification</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LA0EMhgdRsFbvgpeCB09bk81MJ3ss9aOFipd6HqbTLG6p3To7W_Hfu6XFU17I8ybwKHWLMESE4nExmw1zQB7mbLW29kz1sNCYARg477IxmFEOdKmummYNQBao6KmHJ5Hd4K3dpGpfyc9gKj6mH7-XwbhNn7JNVfCpqrfX6qL0m0ZuTrOvPl6eF5NpNn9_nU3G8ywQUcos-xKN4BL1qgiGwDMyGAwciJc2kBFLbMCPAoxWUnoDmtmzLbjbhBH11f3x7i7W3600ya3rNm67ly5Ha4k06wMFRyrEummilG4Xqy8ffx2CO-hwnQ530OFOOrrK3bFSicg_zppNXjD9AWeFWWk</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Lim, Chin Leng Peter</creator><creator>Woo, Wai Lok</creator><creator>Dlay, Satnam S.</creator><creator>Wu, Di</creator><creator>Gao, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-8698-7605</orcidid><orcidid>https://orcid.org/0000-0002-6841-6075</orcidid></search><sort><creationdate>20190201</creationdate><title>Deep Multiview Heartwave Authentication</title><author>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Authentication</topic><topic>Belief networks</topic><topic>Classification</topic><topic>deep belief network (DBN)</topic><topic>deep learning</topic><topic>discrete wavelet transformation (DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>heartwave</topic><topic>Informatics</topic><topic>multiview spectrum</topic><topic>Network reliability</topic><topic>Physical exercise</topic><topic>Reliability</topic><topic>Senior citizens</topic><topic>Signal classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lim, Chin Leng Peter</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Dlay, Satnam S.</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Chin Leng Peter</au><au>Woo, Wai Lok</au><au>Dlay, Satnam S.</au><au>Wu, Di</au><au>Gao, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiview Heartwave Authentication</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>777</spage><epage>786</epage><pages>777-786</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2874477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-8698-7605</orcidid><orcidid>https://orcid.org/0000-0002-6841-6075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-02, Vol.15 (2), p.777-786 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_8485298 |
source | IEEE Electronic Library (IEL) |
subjects | Authentication Belief networks Classification deep belief network (DBN) deep learning discrete wavelet transformation (DWT) Discrete wavelet transforms Feature extraction Heart rate heartwave Informatics multiview spectrum Network reliability Physical exercise Reliability Senior citizens Signal classification Training |
title | Deep Multiview Heartwave Authentication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiview%20Heartwave%20Authentication&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lim,%20Chin%20Leng%20Peter&rft.date=2019-02-01&rft.volume=15&rft.issue=2&rft.spage=777&rft.epage=786&rft.pages=777-786&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2874477&rft_dat=%3Cproquest_RIE%3E2177334846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177334846&rft_id=info:pmid/&rft_ieee_id=8485298&rfr_iscdi=true |