Deep Multiview Heartwave Authentication

This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2019-02, Vol.15 (2), p.777-786
Hauptverfasser: Lim, Chin Leng Peter, Woo, Wai Lok, Dlay, Satnam S., Wu, Di, Gao, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue 2
container_start_page 777
container_title IEEE transactions on industrial informatics
container_volume 15
creator Lim, Chin Leng Peter
Woo, Wai Lok
Dlay, Satnam S.
Wu, Di
Gao, Bin
description This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.
doi_str_mv 10.1109/TII.2018.2874477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8485298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8485298</ieee_id><sourcerecordid>2177334846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</originalsourceid><addsrcrecordid>eNo9kE1LA0EMhgdRsFbvgpeCB09bk81MJ3ss9aOFipd6HqbTLG6p3To7W_Hfu6XFU17I8ybwKHWLMESE4nExmw1zQB7mbLW29kz1sNCYARg477IxmFEOdKmummYNQBao6KmHJ5Hd4K3dpGpfyc9gKj6mH7-XwbhNn7JNVfCpqrfX6qL0m0ZuTrOvPl6eF5NpNn9_nU3G8ywQUcos-xKN4BL1qgiGwDMyGAwciJc2kBFLbMCPAoxWUnoDmtmzLbjbhBH11f3x7i7W3600ya3rNm67ly5Ha4k06wMFRyrEummilG4Xqy8ffx2CO-hwnQ530OFOOrrK3bFSicg_zppNXjD9AWeFWWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177334846</pqid></control><display><type>article</type><title>Deep Multiview Heartwave Authentication</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</creator><creatorcontrib>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</creatorcontrib><description>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2874477</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Authentication ; Belief networks ; Classification ; deep belief network (DBN) ; deep learning ; discrete wavelet transformation (DWT) ; Discrete wavelet transforms ; Feature extraction ; Heart rate ; heartwave ; Informatics ; multiview spectrum ; Network reliability ; Physical exercise ; Reliability ; Senior citizens ; Signal classification ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2019-02, Vol.15 (2), p.777-786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</citedby><cites>FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</cites><orcidid>0000-0003-3377-6895 ; 0000-0002-8698-7605 ; 0000-0002-6841-6075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8485298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8485298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Chin Leng Peter</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Dlay, Satnam S.</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><title>Deep Multiview Heartwave Authentication</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</description><subject>Authentication</subject><subject>Belief networks</subject><subject>Classification</subject><subject>deep belief network (DBN)</subject><subject>deep learning</subject><subject>discrete wavelet transformation (DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Feature extraction</subject><subject>Heart rate</subject><subject>heartwave</subject><subject>Informatics</subject><subject>multiview spectrum</subject><subject>Network reliability</subject><subject>Physical exercise</subject><subject>Reliability</subject><subject>Senior citizens</subject><subject>Signal classification</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LA0EMhgdRsFbvgpeCB09bk81MJ3ss9aOFipd6HqbTLG6p3To7W_Hfu6XFU17I8ybwKHWLMESE4nExmw1zQB7mbLW29kz1sNCYARg477IxmFEOdKmummYNQBao6KmHJ5Hd4K3dpGpfyc9gKj6mH7-XwbhNn7JNVfCpqrfX6qL0m0ZuTrOvPl6eF5NpNn9_nU3G8ywQUcos-xKN4BL1qgiGwDMyGAwciJc2kBFLbMCPAoxWUnoDmtmzLbjbhBH11f3x7i7W3600ya3rNm67ly5Ha4k06wMFRyrEummilG4Xqy8ffx2CO-hwnQ530OFOOrrK3bFSicg_zppNXjD9AWeFWWk</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Lim, Chin Leng Peter</creator><creator>Woo, Wai Lok</creator><creator>Dlay, Satnam S.</creator><creator>Wu, Di</creator><creator>Gao, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-8698-7605</orcidid><orcidid>https://orcid.org/0000-0002-6841-6075</orcidid></search><sort><creationdate>20190201</creationdate><title>Deep Multiview Heartwave Authentication</title><author>Lim, Chin Leng Peter ; Woo, Wai Lok ; Dlay, Satnam S. ; Wu, Di ; Gao, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-78af15e1b14d9c530a818051c8c38b7c35e73850a6c06defa50488a87985e7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Authentication</topic><topic>Belief networks</topic><topic>Classification</topic><topic>deep belief network (DBN)</topic><topic>deep learning</topic><topic>discrete wavelet transformation (DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Feature extraction</topic><topic>Heart rate</topic><topic>heartwave</topic><topic>Informatics</topic><topic>multiview spectrum</topic><topic>Network reliability</topic><topic>Physical exercise</topic><topic>Reliability</topic><topic>Senior citizens</topic><topic>Signal classification</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Lim, Chin Leng Peter</creatorcontrib><creatorcontrib>Woo, Wai Lok</creatorcontrib><creatorcontrib>Dlay, Satnam S.</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Chin Leng Peter</au><au>Woo, Wai Lok</au><au>Dlay, Satnam S.</au><au>Wu, Di</au><au>Gao, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Multiview Heartwave Authentication</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>777</spage><epage>786</epage><pages>777-786</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This paper presents a heartwave based authentication method that utilizes an ensemble of deep belief networks (DBNs) under different parameters to increase the reliability of feature extraction. The multiview outputs are further embedded into a single view before inputting into a stacked DBN for classification. The result of the proposed novel architecture achieved a classification rate of 98.3% with 30% training data. Importantly, it is able to perform user classification using heartwave signals acquired under intense physical exercise where heart rate ranges from 50 bpm to as high as 180 bpm. Under extreme physical duress, the heartwave from an individual experiences extreme morphological variations that render conventional classification approaches nonapplicable.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2874477</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3377-6895</orcidid><orcidid>https://orcid.org/0000-0002-8698-7605</orcidid><orcidid>https://orcid.org/0000-0002-6841-6075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-02, Vol.15 (2), p.777-786
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_8485298
source IEEE Electronic Library (IEL)
subjects Authentication
Belief networks
Classification
deep belief network (DBN)
deep learning
discrete wavelet transformation (DWT)
Discrete wavelet transforms
Feature extraction
Heart rate
heartwave
Informatics
multiview spectrum
Network reliability
Physical exercise
Reliability
Senior citizens
Signal classification
Training
title Deep Multiview Heartwave Authentication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Multiview%20Heartwave%20Authentication&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Lim,%20Chin%20Leng%20Peter&rft.date=2019-02-01&rft.volume=15&rft.issue=2&rft.spage=777&rft.epage=786&rft.pages=777-786&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2874477&rft_dat=%3Cproquest_RIE%3E2177334846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2177334846&rft_id=info:pmid/&rft_ieee_id=8485298&rfr_iscdi=true