Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images
Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achie...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2019-02, Vol.16 (2), p.271-275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 16 |
creator | Liu, Guichi Qi, Lin Tie, Yun Ma, Long |
description | Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models. |
doi_str_mv | 10.1109/LGRS.2018.2870935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8482331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8482331</ieee_id><sourcerecordid>2170728500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6aj81u9qit1kJBaRW8hWx20m5pk5qkgv_eLC2e5mV4ZoZ5suyW4BEhuH6YTxfLEcVEjKiocM34WTYgnIsc84qc97ngOa_F12V2FcIGY1oIUQ2y9QJWnbO5M_nMRvAQIppABB1TFz2pAC1KYRlV7ELstNqiSR9sAn7AQgjIOI_eldVr73aJ0mgBOxcBLcGGzq7QbKdWEK6zC6O2AW5OdZh9vjx_jF_z-dt0Nn6c55rWLOYFq41qaK1E23BGqC4YbbAwZdtiZURjNOcNLhnHZVMKRSjmTUm0KFXV6qIt2DC7P-7de_d9SO_IjTt4m05KSipcUcExThQ5Utq7EDwYuffdTvlfSbDshcpeqOyFypPQNHN3nOkA4J8XhaCMEfYHEHNzAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170728500</pqid></control><display><type>article</type><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</creator><creatorcontrib>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</creatorcontrib><description>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2870935</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Biological system modeling ; Colour ; Computational modeling ; Computer applications ; Computing time ; Detection ; Estimation ; Feature extraction ; Image color analysis ; Image detection ; Independent component analysis (ICA) ; Mathematical models ; region covariance ; region-of-interest (ROI) detection ; Remote sensing ; Salience ; Satellite imagery ; Satellites ; State of the art ; statistical distinctiveness (SD) ; Visualization</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-02, Vol.16 (2), p.271-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</citedby><cites>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</cites><orcidid>0000-0002-5011-2161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8482331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8482331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Guichi</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Tie, Yun</creatorcontrib><creatorcontrib>Ma, Long</creatorcontrib><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Colour</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Detection</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Image detection</subject><subject>Independent component analysis (ICA)</subject><subject>Mathematical models</subject><subject>region covariance</subject><subject>region-of-interest (ROI) detection</subject><subject>Remote sensing</subject><subject>Salience</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>State of the art</subject><subject>statistical distinctiveness (SD)</subject><subject>Visualization</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6aj81u9qit1kJBaRW8hWx20m5pk5qkgv_eLC2e5mV4ZoZ5suyW4BEhuH6YTxfLEcVEjKiocM34WTYgnIsc84qc97ngOa_F12V2FcIGY1oIUQ2y9QJWnbO5M_nMRvAQIppABB1TFz2pAC1KYRlV7ELstNqiSR9sAn7AQgjIOI_eldVr73aJ0mgBOxcBLcGGzq7QbKdWEK6zC6O2AW5OdZh9vjx_jF_z-dt0Nn6c55rWLOYFq41qaK1E23BGqC4YbbAwZdtiZURjNOcNLhnHZVMKRSjmTUm0KFXV6qIt2DC7P-7de_d9SO_IjTt4m05KSipcUcExThQ5Utq7EDwYuffdTvlfSbDshcpeqOyFypPQNHN3nOkA4J8XhaCMEfYHEHNzAw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Liu, Guichi</creator><creator>Qi, Lin</creator><creator>Tie, Yun</creator><creator>Ma, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5011-2161</orcidid></search><sort><creationdate>20190201</creationdate><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><author>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Colour</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Detection</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Image detection</topic><topic>Independent component analysis (ICA)</topic><topic>Mathematical models</topic><topic>region covariance</topic><topic>region-of-interest (ROI) detection</topic><topic>Remote sensing</topic><topic>Salience</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>State of the art</topic><topic>statistical distinctiveness (SD)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guichi</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Tie, Yun</creatorcontrib><creatorcontrib>Ma, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Guichi</au><au>Qi, Lin</au><au>Tie, Yun</au><au>Ma, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2870935</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5011-2161</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2019-02, Vol.16 (2), p.271-275 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8482331 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Biological system modeling Colour Computational modeling Computer applications Computing time Detection Estimation Feature extraction Image color analysis Image detection Independent component analysis (ICA) Mathematical models region covariance region-of-interest (ROI) detection Remote sensing Salience Satellite imagery Satellites State of the art statistical distinctiveness (SD) Visualization |
title | Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Region-of-Interest%20Detection%20Based%20on%20Statistical%20Distinctiveness%20for%20Panchromatic%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Guichi&rft.date=2019-02-01&rft.volume=16&rft.issue=2&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2870935&rft_dat=%3Cproquest_RIE%3E2170728500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170728500&rft_id=info:pmid/&rft_ieee_id=8482331&rfr_iscdi=true |