Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images

Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2019-02, Vol.16 (2), p.271-275
Hauptverfasser: Liu, Guichi, Qi, Lin, Tie, Yun, Ma, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 2
container_start_page 271
container_title IEEE geoscience and remote sensing letters
container_volume 16
creator Liu, Guichi
Qi, Lin
Tie, Yun
Ma, Long
description Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.
doi_str_mv 10.1109/LGRS.2018.2870935
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8482331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8482331</ieee_id><sourcerecordid>2170728500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6aj81u9qit1kJBaRW8hWx20m5pk5qkgv_eLC2e5mV4ZoZ5suyW4BEhuH6YTxfLEcVEjKiocM34WTYgnIsc84qc97ngOa_F12V2FcIGY1oIUQ2y9QJWnbO5M_nMRvAQIppABB1TFz2pAC1KYRlV7ELstNqiSR9sAn7AQgjIOI_eldVr73aJ0mgBOxcBLcGGzq7QbKdWEK6zC6O2AW5OdZh9vjx_jF_z-dt0Nn6c55rWLOYFq41qaK1E23BGqC4YbbAwZdtiZURjNOcNLhnHZVMKRSjmTUm0KFXV6qIt2DC7P-7de_d9SO_IjTt4m05KSipcUcExThQ5Utq7EDwYuffdTvlfSbDshcpeqOyFypPQNHN3nOkA4J8XhaCMEfYHEHNzAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170728500</pqid></control><display><type>article</type><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</creator><creatorcontrib>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</creatorcontrib><description>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2870935</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Biological system modeling ; Colour ; Computational modeling ; Computer applications ; Computing time ; Detection ; Estimation ; Feature extraction ; Image color analysis ; Image detection ; Independent component analysis (ICA) ; Mathematical models ; region covariance ; region-of-interest (ROI) detection ; Remote sensing ; Salience ; Satellite imagery ; Satellites ; State of the art ; statistical distinctiveness (SD) ; Visualization</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-02, Vol.16 (2), p.271-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</citedby><cites>FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</cites><orcidid>0000-0002-5011-2161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8482331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8482331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Guichi</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Tie, Yun</creatorcontrib><creatorcontrib>Ma, Long</creatorcontrib><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Colour</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing time</subject><subject>Detection</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Image color analysis</subject><subject>Image detection</subject><subject>Independent component analysis (ICA)</subject><subject>Mathematical models</subject><subject>region covariance</subject><subject>region-of-interest (ROI) detection</subject><subject>Remote sensing</subject><subject>Salience</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>State of the art</subject><subject>statistical distinctiveness (SD)</subject><subject>Visualization</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsFZ_gHgJeN6aj81u9qit1kJBaRW8hWx20m5pk5qkgv_eLC2e5mV4ZoZ5suyW4BEhuH6YTxfLEcVEjKiocM34WTYgnIsc84qc97ngOa_F12V2FcIGY1oIUQ2y9QJWnbO5M_nMRvAQIppABB1TFz2pAC1KYRlV7ELstNqiSR9sAn7AQgjIOI_eldVr73aJ0mgBOxcBLcGGzq7QbKdWEK6zC6O2AW5OdZh9vjx_jF_z-dt0Nn6c55rWLOYFq41qaK1E23BGqC4YbbAwZdtiZURjNOcNLhnHZVMKRSjmTUm0KFXV6qIt2DC7P-7de_d9SO_IjTt4m05KSipcUcExThQ5Utq7EDwYuffdTvlfSbDshcpeqOyFypPQNHN3nOkA4J8XhaCMEfYHEHNzAw</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Liu, Guichi</creator><creator>Qi, Lin</creator><creator>Tie, Yun</creator><creator>Ma, Long</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5011-2161</orcidid></search><sort><creationdate>20190201</creationdate><title>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</title><author>Liu, Guichi ; Qi, Lin ; Tie, Yun ; Ma, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-439fab29a8db5312c432b08f6dd0af8bfc55b063506b68a1205b61c86a7dc4d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Colour</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing time</topic><topic>Detection</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Image color analysis</topic><topic>Image detection</topic><topic>Independent component analysis (ICA)</topic><topic>Mathematical models</topic><topic>region covariance</topic><topic>region-of-interest (ROI) detection</topic><topic>Remote sensing</topic><topic>Salience</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>State of the art</topic><topic>statistical distinctiveness (SD)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guichi</creatorcontrib><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Tie, Yun</creatorcontrib><creatorcontrib>Ma, Long</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Guichi</au><au>Qi, Lin</au><au>Tie, Yun</au><au>Ma, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>16</volume><issue>2</issue><spage>271</spage><epage>275</epage><pages>271-275</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Region-of-interest (ROI) detection plays a significant role in the analysis and interpretation of remote sensing images (RSI), due to the huge size of satellite images and their explosive growth in quantity. However, when applied to panchromatic RSI directly, traditional saliency models cannot achieve satisfying performance for two reasons: one is the computational efficiency decrease caused by the huge image size; the other is the absence of color information for panchromatic RSI. Thus, in this letter, an ROI detection model based on statistical distinctiveness (SD) is proposed for saliency analysis and ROIs detection in panchromatic RSI. The proposed SD model incorporates both the lower order SD (LSD) and the higher order SD (HSD), in order to identify regions of interest that are highly distinctive from the rest of the scene. Finally, the saliency map is determined by fusing cue maps obtained by calculating LSD locally and HSD globally. Experimental results show that our approach achieves promising results when compared with existing state-of-the-art saliency detection models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2870935</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5011-2161</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2019-02, Vol.16 (2), p.271-275
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8482331
source IEEE Electronic Library (IEL)
subjects Analytical models
Biological system modeling
Colour
Computational modeling
Computer applications
Computing time
Detection
Estimation
Feature extraction
Image color analysis
Image detection
Independent component analysis (ICA)
Mathematical models
region covariance
region-of-interest (ROI) detection
Remote sensing
Salience
Satellite imagery
Satellites
State of the art
statistical distinctiveness (SD)
Visualization
title Region-of-Interest Detection Based on Statistical Distinctiveness for Panchromatic Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Region-of-Interest%20Detection%20Based%20on%20Statistical%20Distinctiveness%20for%20Panchromatic%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Guichi&rft.date=2019-02-01&rft.volume=16&rft.issue=2&rft.spage=271&rft.epage=275&rft.pages=271-275&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2870935&rft_dat=%3Cproquest_RIE%3E2170728500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170728500&rft_id=info:pmid/&rft_ieee_id=8482331&rfr_iscdi=true