Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation
In this paper, an efficient and compact inline interferometric fiber sensor array based on Fiber Bragg Grating (FBG) and rectangular-pulse binary phase modulation is proposed. FBGs are made inline on the fiber to act as the reflection mirrors to construct the interferometer working as the sensing ar...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2018-12, Vol.18 (23), p.9556-9561 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9561 |
---|---|
container_issue | 23 |
container_start_page | 9556 |
container_title | IEEE sensors journal |
container_volume | 18 |
creator | Ren, Zhongjie Cui, Ke Zhu, Rihong Peng, Wenjun Qian, Jieyu |
description | In this paper, an efficient and compact inline interferometric fiber sensor array based on Fiber Bragg Grating (FBG) and rectangular-pulse binary phase modulation is proposed. FBGs are made inline on the fiber to act as the reflection mirrors to construct the interferometer working as the sensing area. Polarizer-based polarization diversity receiver method is used to overcome the polarization-induced signal fading. This sensor configuration makes the whole system efficient, compact, and cost-effective while maintaining satisfactory performance. With binary phase modulation imposed on the specific location of the pulsed light source with a rectangular pulse, three phase-shifting steps of π/2, 0, and -π/2, radians are generated and the phase shifts that carry the vibration signals are demodulated with an orthogonal demodulation algorithm. The method has the advantages of low complexity, low cost, and high real-time capability. The techniques are theoretically analyzed and experimentally demonstrated using a two-channel time-division multiplexing array. The obtained resolution of the sensor system can reach 3 × 10 -4 rad/√Hz. The efficiency and compactness of the proposed sensor array further narrow down the gap between the laboratory demonstration and practical use of practical fiber-optic sensors. |
doi_str_mv | 10.1109/JSEN.2018.2871867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8471101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8471101</ieee_id><sourcerecordid>2133749692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e9765e35207e5a49bb3ba821ce3cda87b6400d53775c9a93b7c3a1d0b1a6d8da3</originalsourceid><addsrcrecordid>eNo9kM1OAjEQxzdGExF9AOOliefFdru77R6BAGJQiWjibTPbncUSaLFbDryCT20R4mkm-X_M5BdFt4z2GKPFw9Ni9NJLKJO9RAomc3EWdViWyZiJVJ4fdk7jlIvPy-iqbVeUskJkohP9jJpGK43GEzA1GdrNFpQnU7PWBsPw6Bp0doPeaUXGukJHFmha60jfOdiTAbRYE2tO2sDBckkmDrw2y7_KN1QezHK3BhfPd-sWyUAbcHsy_wpR8mzrIHltzXV00UDQb06zG32MR-_Dx3j2OpkO-7NY8Zz7GAuRZ8izhArMIC2qilcgE6aQqxqkqPKU0jrjQmSqgIJXQnFgNa0Y5LWsgXej-2Pv1tnvHba-XNmdM-FkmTDORVrkRRJc7OhSzratw6bcOr0Jf5eMlgfk5QF5eUBenpCHzN0xoxHx3y9TEfyM_wJze36c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133749692</pqid></control><display><type>article</type><title>Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation</title><source>IEEE Electronic Library (IEL)</source><creator>Ren, Zhongjie ; Cui, Ke ; Zhu, Rihong ; Peng, Wenjun ; Qian, Jieyu</creator><creatorcontrib>Ren, Zhongjie ; Cui, Ke ; Zhu, Rihong ; Peng, Wenjun ; Qian, Jieyu</creatorcontrib><description>In this paper, an efficient and compact inline interferometric fiber sensor array based on Fiber Bragg Grating (FBG) and rectangular-pulse binary phase modulation is proposed. FBGs are made inline on the fiber to act as the reflection mirrors to construct the interferometer working as the sensing area. Polarizer-based polarization diversity receiver method is used to overcome the polarization-induced signal fading. This sensor configuration makes the whole system efficient, compact, and cost-effective while maintaining satisfactory performance. With binary phase modulation imposed on the specific location of the pulsed light source with a rectangular pulse, three phase-shifting steps of π/2, 0, and -π/2, radians are generated and the phase shifts that carry the vibration signals are demodulated with an orthogonal demodulation algorithm. The method has the advantages of low complexity, low cost, and high real-time capability. The techniques are theoretically analyzed and experimentally demonstrated using a two-channel time-division multiplexing array. The obtained resolution of the sensor system can reach 3 × 10 -4 rad/√Hz. The efficiency and compactness of the proposed sensor array further narrow down the gap between the laboratory demonstration and practical use of practical fiber-optic sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2871867</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cost analysis ; Demodulation ; Division ; Fabry-Perot ; fiber optic sensors ; Fiber optics ; Interferometry ; Multiplexing ; Optical fiber polarization ; Optical fiber sensors ; Optical fibers ; Phase modulation ; Polarization ; Polarizers ; Sensor arrays ; Sensors ; Signal fading</subject><ispartof>IEEE sensors journal, 2018-12, Vol.18 (23), p.9556-9561</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e9765e35207e5a49bb3ba821ce3cda87b6400d53775c9a93b7c3a1d0b1a6d8da3</citedby><cites>FETCH-LOGICAL-c363t-e9765e35207e5a49bb3ba821ce3cda87b6400d53775c9a93b7c3a1d0b1a6d8da3</cites><orcidid>0000-0002-3699-5949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8471101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8471101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ren, Zhongjie</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Zhu, Rihong</creatorcontrib><creatorcontrib>Peng, Wenjun</creatorcontrib><creatorcontrib>Qian, Jieyu</creatorcontrib><title>Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, an efficient and compact inline interferometric fiber sensor array based on Fiber Bragg Grating (FBG) and rectangular-pulse binary phase modulation is proposed. FBGs are made inline on the fiber to act as the reflection mirrors to construct the interferometer working as the sensing area. Polarizer-based polarization diversity receiver method is used to overcome the polarization-induced signal fading. This sensor configuration makes the whole system efficient, compact, and cost-effective while maintaining satisfactory performance. With binary phase modulation imposed on the specific location of the pulsed light source with a rectangular pulse, three phase-shifting steps of π/2, 0, and -π/2, radians are generated and the phase shifts that carry the vibration signals are demodulated with an orthogonal demodulation algorithm. The method has the advantages of low complexity, low cost, and high real-time capability. The techniques are theoretically analyzed and experimentally demonstrated using a two-channel time-division multiplexing array. The obtained resolution of the sensor system can reach 3 × 10 -4 rad/√Hz. The efficiency and compactness of the proposed sensor array further narrow down the gap between the laboratory demonstration and practical use of practical fiber-optic sensors.</description><subject>Cost analysis</subject><subject>Demodulation</subject><subject>Division</subject><subject>Fabry-Perot</subject><subject>fiber optic sensors</subject><subject>Fiber optics</subject><subject>Interferometry</subject><subject>Multiplexing</subject><subject>Optical fiber polarization</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Phase modulation</subject><subject>Polarization</subject><subject>Polarizers</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal fading</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEQxzdGExF9AOOliefFdru77R6BAGJQiWjibTPbncUSaLFbDryCT20R4mkm-X_M5BdFt4z2GKPFw9Ni9NJLKJO9RAomc3EWdViWyZiJVJ4fdk7jlIvPy-iqbVeUskJkohP9jJpGK43GEzA1GdrNFpQnU7PWBsPw6Bp0doPeaUXGukJHFmha60jfOdiTAbRYE2tO2sDBckkmDrw2y7_KN1QezHK3BhfPd-sWyUAbcHsy_wpR8mzrIHltzXV00UDQb06zG32MR-_Dx3j2OpkO-7NY8Zz7GAuRZ8izhArMIC2qilcgE6aQqxqkqPKU0jrjQmSqgIJXQnFgNa0Y5LWsgXej-2Pv1tnvHba-XNmdM-FkmTDORVrkRRJc7OhSzratw6bcOr0Jf5eMlgfk5QF5eUBenpCHzN0xoxHx3y9TEfyM_wJze36c</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Ren, Zhongjie</creator><creator>Cui, Ke</creator><creator>Zhu, Rihong</creator><creator>Peng, Wenjun</creator><creator>Qian, Jieyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid></search><sort><creationdate>20181201</creationdate><title>Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation</title><author>Ren, Zhongjie ; Cui, Ke ; Zhu, Rihong ; Peng, Wenjun ; Qian, Jieyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e9765e35207e5a49bb3ba821ce3cda87b6400d53775c9a93b7c3a1d0b1a6d8da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cost analysis</topic><topic>Demodulation</topic><topic>Division</topic><topic>Fabry-Perot</topic><topic>fiber optic sensors</topic><topic>Fiber optics</topic><topic>Interferometry</topic><topic>Multiplexing</topic><topic>Optical fiber polarization</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Phase modulation</topic><topic>Polarization</topic><topic>Polarizers</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal fading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhongjie</creatorcontrib><creatorcontrib>Cui, Ke</creatorcontrib><creatorcontrib>Zhu, Rihong</creatorcontrib><creatorcontrib>Peng, Wenjun</creatorcontrib><creatorcontrib>Qian, Jieyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ren, Zhongjie</au><au>Cui, Ke</au><au>Zhu, Rihong</au><au>Peng, Wenjun</au><au>Qian, Jieyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>18</volume><issue>23</issue><spage>9556</spage><epage>9561</epage><pages>9556-9561</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, an efficient and compact inline interferometric fiber sensor array based on Fiber Bragg Grating (FBG) and rectangular-pulse binary phase modulation is proposed. FBGs are made inline on the fiber to act as the reflection mirrors to construct the interferometer working as the sensing area. Polarizer-based polarization diversity receiver method is used to overcome the polarization-induced signal fading. This sensor configuration makes the whole system efficient, compact, and cost-effective while maintaining satisfactory performance. With binary phase modulation imposed on the specific location of the pulsed light source with a rectangular pulse, three phase-shifting steps of π/2, 0, and -π/2, radians are generated and the phase shifts that carry the vibration signals are demodulated with an orthogonal demodulation algorithm. The method has the advantages of low complexity, low cost, and high real-time capability. The techniques are theoretically analyzed and experimentally demonstrated using a two-channel time-division multiplexing array. The obtained resolution of the sensor system can reach 3 × 10 -4 rad/√Hz. The efficiency and compactness of the proposed sensor array further narrow down the gap between the laboratory demonstration and practical use of practical fiber-optic sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2018.2871867</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3699-5949</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2018-12, Vol.18 (23), p.9556-9561 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_8471101 |
source | IEEE Electronic Library (IEL) |
subjects | Cost analysis Demodulation Division Fabry-Perot fiber optic sensors Fiber optics Interferometry Multiplexing Optical fiber polarization Optical fiber sensors Optical fibers Phase modulation Polarization Polarizers Sensor arrays Sensors Signal fading |
title | Efficient and Compact Inline Interferometric Fiber Sensor Array Based on Fiber Bragg Grating and Rectangular-Pulse Binary Phase Modulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Compact%20Inline%20Interferometric%20Fiber%20Sensor%20Array%20Based%20on%20Fiber%20Bragg%20Grating%20and%20Rectangular-Pulse%20Binary%20Phase%20Modulation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ren,%20Zhongjie&rft.date=2018-12-01&rft.volume=18&rft.issue=23&rft.spage=9556&rft.epage=9561&rft.pages=9556-9561&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2871867&rft_dat=%3Cproquest_RIE%3E2133749692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133749692&rft_id=info:pmid/&rft_ieee_id=8471101&rfr_iscdi=true |