Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN

Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-01, Vol.50 (1), p.100-111
Hauptverfasser: Zhang, Mengmeng, Li, Wei, Du, Qian, Gao, Lianru, Zhang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue 1
container_start_page 100
container_title IEEE transactions on cybernetics
container_volume 50
creator Zhang, Mengmeng
Li, Wei
Du, Qian
Gao, Lianru
Zhang, Bing
description Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better classification performance. In this paper, an unsupervised feature extraction framework, named as patch-to-patch convolutional neural network (PToP CNN), is proposed for collaborative classification of hyperspectral and LiDAR data. More specific, a three-tower PToP mapping is first developed to seek an accurate representation from HSI to LiDAR data, aiming at merging multiscale features between two different sources. Then, by integrating hidden layers of the designed PToP CNN, extracted features are expected to possess deeply fused characteristics. Accordingly, features from different hidden layers are concatenated into a stacked vector and fed into three fully connected layers. To verify the effectiveness of the proposed classification framework, experiments are executed on two benchmark remote sensing data sets. The experimental results demonstrate that the proposed method provides superior performance when compared with some state-of-the-art classifiers, such as two-branch CNN and context CNN.
doi_str_mv 10.1109/TCYB.2018.2864670
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8467496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8467496</ieee_id><sourcerecordid>2308297896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-59187d8dddcf09e6624617b05183df38ea916d7737ccc5c073c25cb7a0ce22993</originalsourceid><addsrcrecordid>eNpdkE9LwzAYh4MoTqYfQAQJePHSmaTNv6N2mxPGFNGDF0OWptrRNTNpwX17Mzd38L3k5c3zexMeAM4xGmCM5M1L_nY3IAiLAREsYxwdgBOCmUgI4fRw3zPeA2chLFAsEUdSHINeikhKMWUn4H1sddt5C0ffrdemrVwDS-dhXusQqrIy-nfkSjhZr6wPK2siV0PdFHBaDW-f4VC3Gr6GqvmAT7o1n0nrkt8G5rPZKTgqdR3s2e7sg9fx6CWfJNPH-4f8dpqYDNM2oRILXoiiKEyJpGWMZAzzOaJYpEWZCqslZgXnKTfGUIN4agg1c66RsYRImfbB9XbvyruvzoZWLatgbF3rxrouKIJj0YxyFNGrf-jCdb6Jv1MkRYJILiSLFN5SxrsQvC3VyldL7dcKI7Xxrzb-1ca_2vmPmcvd5m6-tMU-8Wc7AhdboLLW7q9FDGfxyR_CB4ck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308297896</pqid></control><display><type>article</type><title>Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Mengmeng ; Li, Wei ; Du, Qian ; Gao, Lianru ; Zhang, Bing</creator><creatorcontrib>Zhang, Mengmeng ; Li, Wei ; Du, Qian ; Gao, Lianru ; Zhang, Bing</creatorcontrib><description>Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better classification performance. In this paper, an unsupervised feature extraction framework, named as patch-to-patch convolutional neural network (PToP CNN), is proposed for collaborative classification of hyperspectral and LiDAR data. More specific, a three-tower PToP mapping is first developed to seek an accurate representation from HSI to LiDAR data, aiming at merging multiscale features between two different sources. Then, by integrating hidden layers of the designed PToP CNN, extracted features are expected to possess deeply fused characteristics. Accordingly, features from different hidden layers are concatenated into a stacked vector and fed into three fully connected layers. To verify the effectiveness of the proposed classification framework, experiments are executed on two benchmark remote sensing data sets. The experimental results demonstrate that the proposed method provides superior performance when compared with some state-of-the-art classifiers, such as two-branch CNN and context CNN.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2018.2864670</identifier><identifier>PMID: 30235156</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computer architecture ; Decoding ; Deep convolutional neural network (CNN) ; Feature extraction ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image detection ; Laser radar ; Lidar ; Mapping ; Multisensor fusion ; Remote sensing ; Simulation ; Task analysis</subject><ispartof>IEEE transactions on cybernetics, 2020-01, Vol.50 (1), p.100-111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-59187d8dddcf09e6624617b05183df38ea916d7737ccc5c073c25cb7a0ce22993</citedby><cites>FETCH-LOGICAL-c415t-59187d8dddcf09e6624617b05183df38ea916d7737ccc5c073c25cb7a0ce22993</cites><orcidid>0000-0002-5724-9785 ; 0000-0003-3888-8124 ; 0000-0001-8354-7500 ; 0000-0001-7015-7335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8467496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8467496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30235156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Gao, Lianru</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better classification performance. In this paper, an unsupervised feature extraction framework, named as patch-to-patch convolutional neural network (PToP CNN), is proposed for collaborative classification of hyperspectral and LiDAR data. More specific, a three-tower PToP mapping is first developed to seek an accurate representation from HSI to LiDAR data, aiming at merging multiscale features between two different sources. Then, by integrating hidden layers of the designed PToP CNN, extracted features are expected to possess deeply fused characteristics. Accordingly, features from different hidden layers are concatenated into a stacked vector and fed into three fully connected layers. To verify the effectiveness of the proposed classification framework, experiments are executed on two benchmark remote sensing data sets. The experimental results demonstrate that the proposed method provides superior performance when compared with some state-of-the-art classifiers, such as two-branch CNN and context CNN.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Decoding</subject><subject>Deep convolutional neural network (CNN)</subject><subject>Feature extraction</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image detection</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Mapping</subject><subject>Multisensor fusion</subject><subject>Remote sensing</subject><subject>Simulation</subject><subject>Task analysis</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9LwzAYh4MoTqYfQAQJePHSmaTNv6N2mxPGFNGDF0OWptrRNTNpwX17Mzd38L3k5c3zexMeAM4xGmCM5M1L_nY3IAiLAREsYxwdgBOCmUgI4fRw3zPeA2chLFAsEUdSHINeikhKMWUn4H1sddt5C0ffrdemrVwDS-dhXusQqrIy-nfkSjhZr6wPK2siV0PdFHBaDW-f4VC3Gr6GqvmAT7o1n0nrkt8G5rPZKTgqdR3s2e7sg9fx6CWfJNPH-4f8dpqYDNM2oRILXoiiKEyJpGWMZAzzOaJYpEWZCqslZgXnKTfGUIN4agg1c66RsYRImfbB9XbvyruvzoZWLatgbF3rxrouKIJj0YxyFNGrf-jCdb6Jv1MkRYJILiSLFN5SxrsQvC3VyldL7dcKI7Xxrzb-1ca_2vmPmcvd5m6-tMU-8Wc7AhdboLLW7q9FDGfxyR_CB4ck</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Mengmeng</creator><creator>Li, Wei</creator><creator>Du, Qian</creator><creator>Gao, Lianru</creator><creator>Zhang, Bing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5724-9785</orcidid><orcidid>https://orcid.org/0000-0003-3888-8124</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid></search><sort><creationdate>20200101</creationdate><title>Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN</title><author>Zhang, Mengmeng ; Li, Wei ; Du, Qian ; Gao, Lianru ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-59187d8dddcf09e6624617b05183df38ea916d7737ccc5c073c25cb7a0ce22993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Decoding</topic><topic>Deep convolutional neural network (CNN)</topic><topic>Feature extraction</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image detection</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Mapping</topic><topic>Multisensor fusion</topic><topic>Remote sensing</topic><topic>Simulation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mengmeng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Du, Qian</creatorcontrib><creatorcontrib>Gao, Lianru</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Mengmeng</au><au>Li, Wei</au><au>Du, Qian</au><au>Gao, Lianru</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>100</spage><epage>111</epage><pages>100-111</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Multisensor fusion is of great importance in Earth observation related applications. For instance, hyperspectral images (HSIs) provide wealthy spectral information while light detection and ranging (LiDAR) data provide elevation information, and using HSI and LiDAR data together can achieve better classification performance. In this paper, an unsupervised feature extraction framework, named as patch-to-patch convolutional neural network (PToP CNN), is proposed for collaborative classification of hyperspectral and LiDAR data. More specific, a three-tower PToP mapping is first developed to seek an accurate representation from HSI to LiDAR data, aiming at merging multiscale features between two different sources. Then, by integrating hidden layers of the designed PToP CNN, extracted features are expected to possess deeply fused characteristics. Accordingly, features from different hidden layers are concatenated into a stacked vector and fed into three fully connected layers. To verify the effectiveness of the proposed classification framework, experiments are executed on two benchmark remote sensing data sets. The experimental results demonstrate that the proposed method provides superior performance when compared with some state-of-the-art classifiers, such as two-branch CNN and context CNN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30235156</pmid><doi>10.1109/TCYB.2018.2864670</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5724-9785</orcidid><orcidid>https://orcid.org/0000-0003-3888-8124</orcidid><orcidid>https://orcid.org/0000-0001-8354-7500</orcidid><orcidid>https://orcid.org/0000-0001-7015-7335</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2020-01, Vol.50 (1), p.100-111
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_8467496
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Computer architecture
Decoding
Deep convolutional neural network (CNN)
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
Image detection
Laser radar
Lidar
Mapping
Multisensor fusion
Remote sensing
Simulation
Task analysis
title Feature Extraction for Classification of Hyperspectral and LiDAR Data Using Patch-to-Patch CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Extraction%20for%20Classification%20of%20Hyperspectral%20and%20LiDAR%20Data%20Using%20Patch-to-Patch%20CNN&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhang,%20Mengmeng&rft.date=2020-01-01&rft.volume=50&rft.issue=1&rft.spage=100&rft.epage=111&rft.pages=100-111&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2018.2864670&rft_dat=%3Cproquest_RIE%3E2308297896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308297896&rft_id=info:pmid/30235156&rft_ieee_id=8467496&rfr_iscdi=true