A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching
Due to the significant nonlinear intensity changes of multispectral images, automatic image feature point matching is a challenging task. This letter addresses the problem and proposes a novel descriptor combining the structure and texture information to solve the nonlinear intensity variations of m...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2019-01, Vol.16 (1), p.100-104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 1 |
container_start_page | 100 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 16 |
creator | Fu, Zhitao Qin, Qianqing Luo, Bin Wu, Chun Sun, Hong |
description | Due to the significant nonlinear intensity changes of multispectral images, automatic image feature point matching is a challenging task. This letter addresses the problem and proposes a novel descriptor combining the structure and texture information to solve the nonlinear intensity variations of multispectral images. We first propose directional maps, i.e., the directional response maps (DMs) and the directional response binary maps (DBMs), which can capture the common structure and texture properties of multispectral images, respectively. We then use the spatial pooling pattern of the histogram of oriented gradients to separately describe the local region of each point of interest based on the DMs and DBMs. In order to speed up the calculation, we apply Gaussian filters to the DMs and average filters to the DBMs to construct the per-pixel histogram bins. Finally, we conjoin the normalized feature vectors corresponding to the structure description and texture description of each point of interest to obtain the histograms of directional maps (HoDMs). The proposed HoDM descriptor was evaluated using three data sets composed of images obtained in both visible light and infrared spectra. The experimental results confirm that the proposed HoDM descriptor is robust to the nonlinear intensity changes of multispectral images and has a superior matching performance as well as a much higher computational efficiency. |
doi_str_mv | 10.1109/LGRS.2018.2867635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8465970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8465970</ieee_id><sourcerecordid>2162709364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b1baf69fb0f053b2c4b6475bf80c047bc5b4157a690e333dac3f88bc478f97583</originalsourceid><addsrcrecordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdKkxzndHHQIboK3kmTJ7FibmaSg_97WDk_fc3je94MXgFuMJhij_KFYvK0nKcJikoqMZ4SdgRFmTCSIcXzeM2UJy8XHJbgKYY9QSoXgI9BOYeG0PMC5kbH1Bj6ZoH11jM7DRxnMFroGzlytqkbGqmNn4Tr6Vv_JstnCjfn-42Vjna8HqSO4ag-xCkejo-_ql7XcGbiSUX9Wze4aXFh5CObmdMfgff68mb0kxetiOZsWiU5zEhOFlbRZbhWyiBGVaqoyypmyAmlEudJMUcy4zHJkCCFbqYkVQmnKhc05E2QM7ofeo3dfrQmx3LvWN93LMsVZylFOMtpZeLC0dyF4Y8ujr2rpf0qMyn7dsl-37NctT-t2mbshUxlj_n1BM5ZzRH4BboF3fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2162709364</pqid></control><display><type>article</type><title>A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Zhitao ; Qin, Qianqing ; Luo, Bin ; Wu, Chun ; Sun, Hong</creator><creatorcontrib>Fu, Zhitao ; Qin, Qianqing ; Luo, Bin ; Wu, Chun ; Sun, Hong</creatorcontrib><description>Due to the significant nonlinear intensity changes of multispectral images, automatic image feature point matching is a challenging task. This letter addresses the problem and proposes a novel descriptor combining the structure and texture information to solve the nonlinear intensity variations of multispectral images. We first propose directional maps, i.e., the directional response maps (DMs) and the directional response binary maps (DBMs), which can capture the common structure and texture properties of multispectral images, respectively. We then use the spatial pooling pattern of the histogram of oriented gradients to separately describe the local region of each point of interest based on the DMs and DBMs. In order to speed up the calculation, we apply Gaussian filters to the DMs and average filters to the DBMs to construct the per-pixel histogram bins. Finally, we conjoin the normalized feature vectors corresponding to the structure description and texture description of each point of interest to obtain the histograms of directional maps (HoDMs). The proposed HoDM descriptor was evaluated using three data sets composed of images obtained in both visible light and infrared spectra. The experimental results confirm that the proposed HoDM descriptor is robust to the nonlinear intensity changes of multispectral images and has a superior matching performance as well as a much higher computational efficiency.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2867635</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer applications ; Computing time ; Feature extraction ; Filters ; Histograms ; Image edge detection ; Image matching ; Infrared spectra ; Infrared spectroscopy ; Local feature descriptor ; Matching ; multispectral images ; nonlinear intensity ; Remote sensing ; Robustness ; Shape ; structure and texture properties ; Texture ; Vectors</subject><ispartof>IEEE geoscience and remote sensing letters, 2019-01, Vol.16 (1), p.100-104</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b1baf69fb0f053b2c4b6475bf80c047bc5b4157a690e333dac3f88bc478f97583</citedby><cites>FETCH-LOGICAL-c293t-b1baf69fb0f053b2c4b6475bf80c047bc5b4157a690e333dac3f88bc478f97583</cites><orcidid>0000-0002-9501-3693 ; 0000-0002-3040-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8465970$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8465970$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Zhitao</creatorcontrib><creatorcontrib>Qin, Qianqing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wu, Chun</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><title>A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Due to the significant nonlinear intensity changes of multispectral images, automatic image feature point matching is a challenging task. This letter addresses the problem and proposes a novel descriptor combining the structure and texture information to solve the nonlinear intensity variations of multispectral images. We first propose directional maps, i.e., the directional response maps (DMs) and the directional response binary maps (DBMs), which can capture the common structure and texture properties of multispectral images, respectively. We then use the spatial pooling pattern of the histogram of oriented gradients to separately describe the local region of each point of interest based on the DMs and DBMs. In order to speed up the calculation, we apply Gaussian filters to the DMs and average filters to the DBMs to construct the per-pixel histogram bins. Finally, we conjoin the normalized feature vectors corresponding to the structure description and texture description of each point of interest to obtain the histograms of directional maps (HoDMs). The proposed HoDM descriptor was evaluated using three data sets composed of images obtained in both visible light and infrared spectra. The experimental results confirm that the proposed HoDM descriptor is robust to the nonlinear intensity changes of multispectral images and has a superior matching performance as well as a much higher computational efficiency.</description><subject>Computer applications</subject><subject>Computing time</subject><subject>Feature extraction</subject><subject>Filters</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image matching</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Local feature descriptor</subject><subject>Matching</subject><subject>multispectral images</subject><subject>nonlinear intensity</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Shape</subject><subject>structure and texture properties</subject><subject>Texture</subject><subject>Vectors</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAYhoMoOKc_QLwEPHcmTdKkxzndHHQIboK3kmTJ7FibmaSg_97WDk_fc3je94MXgFuMJhij_KFYvK0nKcJikoqMZ4SdgRFmTCSIcXzeM2UJy8XHJbgKYY9QSoXgI9BOYeG0PMC5kbH1Bj6ZoH11jM7DRxnMFroGzlytqkbGqmNn4Tr6Vv_JstnCjfn-42Vjna8HqSO4ag-xCkejo-_ql7XcGbiSUX9Wze4aXFh5CObmdMfgff68mb0kxetiOZsWiU5zEhOFlbRZbhWyiBGVaqoyypmyAmlEudJMUcy4zHJkCCFbqYkVQmnKhc05E2QM7ofeo3dfrQmx3LvWN93LMsVZylFOMtpZeLC0dyF4Y8ujr2rpf0qMyn7dsl-37NctT-t2mbshUxlj_n1BM5ZzRH4BboF3fA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Fu, Zhitao</creator><creator>Qin, Qianqing</creator><creator>Luo, Bin</creator><creator>Wu, Chun</creator><creator>Sun, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9501-3693</orcidid><orcidid>https://orcid.org/0000-0002-3040-3500</orcidid></search><sort><creationdate>201901</creationdate><title>A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching</title><author>Fu, Zhitao ; Qin, Qianqing ; Luo, Bin ; Wu, Chun ; Sun, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b1baf69fb0f053b2c4b6475bf80c047bc5b4157a690e333dac3f88bc478f97583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer applications</topic><topic>Computing time</topic><topic>Feature extraction</topic><topic>Filters</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image matching</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Local feature descriptor</topic><topic>Matching</topic><topic>multispectral images</topic><topic>nonlinear intensity</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Shape</topic><topic>structure and texture properties</topic><topic>Texture</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhitao</creatorcontrib><creatorcontrib>Qin, Qianqing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Wu, Chun</creatorcontrib><creatorcontrib>Sun, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Zhitao</au><au>Qin, Qianqing</au><au>Luo, Bin</au><au>Wu, Chun</au><au>Sun, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2019-01</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>100</spage><epage>104</epage><pages>100-104</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Due to the significant nonlinear intensity changes of multispectral images, automatic image feature point matching is a challenging task. This letter addresses the problem and proposes a novel descriptor combining the structure and texture information to solve the nonlinear intensity variations of multispectral images. We first propose directional maps, i.e., the directional response maps (DMs) and the directional response binary maps (DBMs), which can capture the common structure and texture properties of multispectral images, respectively. We then use the spatial pooling pattern of the histogram of oriented gradients to separately describe the local region of each point of interest based on the DMs and DBMs. In order to speed up the calculation, we apply Gaussian filters to the DMs and average filters to the DBMs to construct the per-pixel histogram bins. Finally, we conjoin the normalized feature vectors corresponding to the structure description and texture description of each point of interest to obtain the histograms of directional maps (HoDMs). The proposed HoDM descriptor was evaluated using three data sets composed of images obtained in both visible light and infrared spectra. The experimental results confirm that the proposed HoDM descriptor is robust to the nonlinear intensity changes of multispectral images and has a superior matching performance as well as a much higher computational efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2867635</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9501-3693</orcidid><orcidid>https://orcid.org/0000-0002-3040-3500</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2019-01, Vol.16 (1), p.100-104 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8465970 |
source | IEEE Electronic Library (IEL) |
subjects | Computer applications Computing time Feature extraction Filters Histograms Image edge detection Image matching Infrared spectra Infrared spectroscopy Local feature descriptor Matching multispectral images nonlinear intensity Remote sensing Robustness Shape structure and texture properties Texture Vectors |
title | A Local Feature Descriptor Based on Combination of Structure and Texture Information for Multispectral Image Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Local%20Feature%20Descriptor%20Based%20on%20Combination%20of%20Structure%20and%20Texture%20Information%20for%20Multispectral%20Image%20Matching&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Fu,%20Zhitao&rft.date=2019-01&rft.volume=16&rft.issue=1&rft.spage=100&rft.epage=104&rft.pages=100-104&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2867635&rft_dat=%3Cproquest_RIE%3E2162709364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2162709364&rft_id=info:pmid/&rft_ieee_id=8465970&rfr_iscdi=true |