Binary Artificial Immune Algorithm for Adaptive Visual Detection

A visual model plays an important role in developing an efficient and robust visual tracker. The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested videos. However, the discriminative ability of features usually varies among videos. Therefore, usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.51587-51597
Hauptverfasser: Gao, Wei, Zhang, Jinling, Liu, Qiaoyuan, Jiang, Longkui, Wang, Yuru, Yin, Minghao, Zhou, Yupeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51597
container_issue
container_start_page 51587
container_title IEEE access
container_volume 6
creator Gao, Wei
Zhang, Jinling
Liu, Qiaoyuan
Jiang, Longkui
Wang, Yuru
Yin, Minghao
Zhou, Yupeng
description A visual model plays an important role in developing an efficient and robust visual tracker. The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested videos. However, the discriminative ability of features usually varies among videos. Therefore, using a fixed set is both redundant and noisy: only a subset of any fixed set will present distinct profiles for modeling. Thus, selecting a highly discriminative cue subset in visual modeling should improve the tracking accuracy. In this paper, an optimization method based on a binary artificial immune algorithm is proposed that selects an effective, discriminative feature subset that is adaptive to specific videos. Specifically, a metric is defined to measure the discriminative abilities of visual models. Then, the visual modeling problem is transformed into an optimization scheme, and a binary artificial immune algorithm is introduced and specially designed to solve the modeling problem. Moreover, to preserve the subset of visual cues that are most adaptive to the tracking condition, the selected cues are assigned adaptive weights and modeled in a Sequential Monte Carlo framework. To show its effectiveness, the proposed algorithm is tested on ten representative videos. The experimental results demonstrate the improvement in tracking performance, the improved tracker performs better or comparable with previous excellent trackers from the literature.
doi_str_mv 10.1109/ACCESS.2018.2869869
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8464667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8464667</ieee_id><doaj_id>oai_doaj_org_article_3ddf31b1450f4906815ab4a834d19863</doaj_id><sourcerecordid>2455847173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61786be4c850df0119df074bcbe9f05e501b7e792aaf98e2b43664fc2925762d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-wW4KXnfm--POOqcOBl5MvQ1pm8yMtplpK_jvzewYhpATDu_75uRJkjkECwiBvMuXy9V2u0AAigUSTMZ9kUwQZDLDFLPLf_frZNZ1exCXiC3KJ8n9g2t1-Enz0DvrSqfrdN00Q2vSvN754PrPJrU-pHmlD737NumH64YoejS9KXvn25vkyuq6M7NTnSbvT6u35Uu2eX1eL_NNVhIg-oxBLlhhSCkoqCyAUMaTk6IsjLSAGgpgwQ2XSGsrhUEFwYwRWyKJKGeowtNkPeZWXu_VIbgmjq28duqv4cNO6fiHsjYKV5XFsICEAkskYAJSXRAtMKlgpINj1u2YdQj-azBdr_Z-CG0cXyFCqSAc8qMKj6oy-K4Lxp5fhUAdyauRvDqSVyfy0TUfXc4Yc3YIwghjHP8CYxl9Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455847173</pqid></control><display><type>article</type><title>Binary Artificial Immune Algorithm for Adaptive Visual Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gao, Wei ; Zhang, Jinling ; Liu, Qiaoyuan ; Jiang, Longkui ; Wang, Yuru ; Yin, Minghao ; Zhou, Yupeng</creator><creatorcontrib>Gao, Wei ; Zhang, Jinling ; Liu, Qiaoyuan ; Jiang, Longkui ; Wang, Yuru ; Yin, Minghao ; Zhou, Yupeng</creatorcontrib><description>A visual model plays an important role in developing an efficient and robust visual tracker. The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested videos. However, the discriminative ability of features usually varies among videos. Therefore, using a fixed set is both redundant and noisy: only a subset of any fixed set will present distinct profiles for modeling. Thus, selecting a highly discriminative cue subset in visual modeling should improve the tracking accuracy. In this paper, an optimization method based on a binary artificial immune algorithm is proposed that selects an effective, discriminative feature subset that is adaptive to specific videos. Specifically, a metric is defined to measure the discriminative abilities of visual models. Then, the visual modeling problem is transformed into an optimization scheme, and a binary artificial immune algorithm is introduced and specially designed to solve the modeling problem. Moreover, to preserve the subset of visual cues that are most adaptive to the tracking condition, the selected cues are assigned adaptive weights and modeled in a Sequential Monte Carlo framework. To show its effectiveness, the proposed algorithm is tested on ten representative videos. The experimental results demonstrate the improvement in tracking performance, the improved tracker performs better or comparable with previous excellent trackers from the literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2869869</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Algorithms ; Artificial immune algorithm ; binary ; Computational modeling ; Cues ; Hidden Markov models ; Model accuracy ; Modelling ; Optimization ; Target tracking ; Tracking ; Video ; Videos ; Visual discrimination ; visual model ; Visualization</subject><ispartof>IEEE access, 2018-01, Vol.6, p.51587-51597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61786be4c850df0119df074bcbe9f05e501b7e792aaf98e2b43664fc2925762d3</citedby><cites>FETCH-LOGICAL-c408t-61786be4c850df0119df074bcbe9f05e501b7e792aaf98e2b43664fc2925762d3</cites><orcidid>0000-0002-8849-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8464667$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Zhang, Jinling</creatorcontrib><creatorcontrib>Liu, Qiaoyuan</creatorcontrib><creatorcontrib>Jiang, Longkui</creatorcontrib><creatorcontrib>Wang, Yuru</creatorcontrib><creatorcontrib>Yin, Minghao</creatorcontrib><creatorcontrib>Zhou, Yupeng</creatorcontrib><title>Binary Artificial Immune Algorithm for Adaptive Visual Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>A visual model plays an important role in developing an efficient and robust visual tracker. The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested videos. However, the discriminative ability of features usually varies among videos. Therefore, using a fixed set is both redundant and noisy: only a subset of any fixed set will present distinct profiles for modeling. Thus, selecting a highly discriminative cue subset in visual modeling should improve the tracking accuracy. In this paper, an optimization method based on a binary artificial immune algorithm is proposed that selects an effective, discriminative feature subset that is adaptive to specific videos. Specifically, a metric is defined to measure the discriminative abilities of visual models. Then, the visual modeling problem is transformed into an optimization scheme, and a binary artificial immune algorithm is introduced and specially designed to solve the modeling problem. Moreover, to preserve the subset of visual cues that are most adaptive to the tracking condition, the selected cues are assigned adaptive weights and modeled in a Sequential Monte Carlo framework. To show its effectiveness, the proposed algorithm is tested on ten representative videos. The experimental results demonstrate the improvement in tracking performance, the improved tracker performs better or comparable with previous excellent trackers from the literature.</description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Artificial immune algorithm</subject><subject>binary</subject><subject>Computational modeling</subject><subject>Cues</subject><subject>Hidden Markov models</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Target tracking</subject><subject>Tracking</subject><subject>Video</subject><subject>Videos</subject><subject>Visual discrimination</subject><subject>visual model</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF1LwzAUhosoOOZ-wW4KXnfm--POOqcOBl5MvQ1pm8yMtplpK_jvzewYhpATDu_75uRJkjkECwiBvMuXy9V2u0AAigUSTMZ9kUwQZDLDFLPLf_frZNZ1exCXiC3KJ8n9g2t1-Enz0DvrSqfrdN00Q2vSvN754PrPJrU-pHmlD737NumH64YoejS9KXvn25vkyuq6M7NTnSbvT6u35Uu2eX1eL_NNVhIg-oxBLlhhSCkoqCyAUMaTk6IsjLSAGgpgwQ2XSGsrhUEFwYwRWyKJKGeowtNkPeZWXu_VIbgmjq28duqv4cNO6fiHsjYKV5XFsICEAkskYAJSXRAtMKlgpINj1u2YdQj-azBdr_Z-CG0cXyFCqSAc8qMKj6oy-K4Lxp5fhUAdyauRvDqSVyfy0TUfXc4Yc3YIwghjHP8CYxl9Rg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gao, Wei</creator><creator>Zhang, Jinling</creator><creator>Liu, Qiaoyuan</creator><creator>Jiang, Longkui</creator><creator>Wang, Yuru</creator><creator>Yin, Minghao</creator><creator>Zhou, Yupeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8849-5663</orcidid></search><sort><creationdate>20180101</creationdate><title>Binary Artificial Immune Algorithm for Adaptive Visual Detection</title><author>Gao, Wei ; Zhang, Jinling ; Liu, Qiaoyuan ; Jiang, Longkui ; Wang, Yuru ; Yin, Minghao ; Zhou, Yupeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61786be4c850df0119df074bcbe9f05e501b7e792aaf98e2b43664fc2925762d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Artificial immune algorithm</topic><topic>binary</topic><topic>Computational modeling</topic><topic>Cues</topic><topic>Hidden Markov models</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Target tracking</topic><topic>Tracking</topic><topic>Video</topic><topic>Videos</topic><topic>Visual discrimination</topic><topic>visual model</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Zhang, Jinling</creatorcontrib><creatorcontrib>Liu, Qiaoyuan</creatorcontrib><creatorcontrib>Jiang, Longkui</creatorcontrib><creatorcontrib>Wang, Yuru</creatorcontrib><creatorcontrib>Yin, Minghao</creatorcontrib><creatorcontrib>Zhou, Yupeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wei</au><au>Zhang, Jinling</au><au>Liu, Qiaoyuan</au><au>Jiang, Longkui</au><au>Wang, Yuru</au><au>Yin, Minghao</au><au>Zhou, Yupeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binary Artificial Immune Algorithm for Adaptive Visual Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>51587</spage><epage>51597</epage><pages>51587-51597</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A visual model plays an important role in developing an efficient and robust visual tracker. The visual cues employed in the state-of-the-art models are usually predefined and fixed for all the tested videos. However, the discriminative ability of features usually varies among videos. Therefore, using a fixed set is both redundant and noisy: only a subset of any fixed set will present distinct profiles for modeling. Thus, selecting a highly discriminative cue subset in visual modeling should improve the tracking accuracy. In this paper, an optimization method based on a binary artificial immune algorithm is proposed that selects an effective, discriminative feature subset that is adaptive to specific videos. Specifically, a metric is defined to measure the discriminative abilities of visual models. Then, the visual modeling problem is transformed into an optimization scheme, and a binary artificial immune algorithm is introduced and specially designed to solve the modeling problem. Moreover, to preserve the subset of visual cues that are most adaptive to the tracking condition, the selected cues are assigned adaptive weights and modeled in a Sequential Monte Carlo framework. To show its effectiveness, the proposed algorithm is tested on ten representative videos. The experimental results demonstrate the improvement in tracking performance, the improved tracker performs better or comparable with previous excellent trackers from the literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2869869</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8849-5663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.51587-51597
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8464667
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptation models
Adaptive algorithms
Algorithms
Artificial immune algorithm
binary
Computational modeling
Cues
Hidden Markov models
Model accuracy
Modelling
Optimization
Target tracking
Tracking
Video
Videos
Visual discrimination
visual model
Visualization
title Binary Artificial Immune Algorithm for Adaptive Visual Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binary%20Artificial%20Immune%20Algorithm%20for%20Adaptive%20Visual%20Detection&rft.jtitle=IEEE%20access&rft.au=Gao,%20Wei&rft.date=2018-01-01&rft.volume=6&rft.spage=51587&rft.epage=51597&rft.pages=51587-51597&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2869869&rft_dat=%3Cproquest_ieee_%3E2455847173%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455847173&rft_id=info:pmid/&rft_ieee_id=8464667&rft_doaj_id=oai_doaj_org_article_3ddf31b1450f4906815ab4a834d19863&rfr_iscdi=true