Improving K-Subspaces via Coherence Pursuit
Subspace clustering is a powerful generalization of clustering for high-dimensional data analysis, where low-rank cluster structure is leveraged for accurate inference. K-Subspaces (KSS), an alternating algorithm that mirrors K-means, is a classical approach for clustering with this model. Like K-me...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2018-12, Vol.12 (6), p.1575-1588 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1588 |
---|---|
container_issue | 6 |
container_start_page | 1575 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 12 |
creator | Gitlin, Andrew Tao, Biaoshuai Balzano, Laura Lipor, John |
description | Subspace clustering is a powerful generalization of clustering for high-dimensional data analysis, where low-rank cluster structure is leveraged for accurate inference. K-Subspaces (KSS), an alternating algorithm that mirrors K-means, is a classical approach for clustering with this model. Like K-means, KSS is highly sensitive to initialization, yet KSS has two major handicaps beyond this issue. First, unlike K-means, the KSS objective is NP-hard to approximate within any finite factor for a large enough subspace rank. Second, it is known that the 12 subspace estimation step is faulty when an estimated cluster has points from multiple subspaces. In this paper, we demonstrate both of these additional drawbacks, provide a proof for the former, and offer a solution to the latter through the use of a robust subspace recovery (RSR) method known as coherence pursuit (CoP). While many RSR methods have been developed in recent years, few can handle the case where the outliers are themselves low rank. We prove that CoP can handle low-rank outliers. This and its low computational complexity make it ideal to incorporate into the subspace estimation step of KSS. We demonstrate on synthetic data that CoP successfully rejects low-rank outliers and show that combining CoP with K-Subspaces yields state-of-the-art clustering performance on canonical benchmark datasets. |
doi_str_mv | 10.1109/JSTSP.2018.2869363 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8457298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8457298</ieee_id><sourcerecordid>10_1109_JSTSP_2018_2869363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-cfa17bf6d8c0b3001de2c0f2eb07c43b1dca58e1b02338662311ea0b7fd9bc43</originalsourceid><addsrcrecordid>eNo9j1FLwzAUhYMoOKd_QF_6Lqn3JmmbPkrROR04aN9Lkt5qxa0jWQf-e1s3fDrn4XwHPsZuEWJEyB9ey6pcxwJQx0KnuUzlGZthrpCD0up86lJwlSTykl2F8AWQZCmqGbtfbna-P3Tbj-iNl4MNO-MoRIfOREX_SZ62jqL14MPQ7a_ZRWu-A92ccs6q56eqeOGr98WyeFxxJxH33LUGM9umjXZgJQA2JBy0gixkTkmLjTOJJrQgpNRpKkaKDNisbXI7DuZMHG-d70Pw1NY7322M_6kR6sm2_rOtJ9v6ZDtCd0eoI6J_QKskE7mWv8M5URs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improving K-Subspaces via Coherence Pursuit</title><source>IEEE Electronic Library (IEL)</source><creator>Gitlin, Andrew ; Tao, Biaoshuai ; Balzano, Laura ; Lipor, John</creator><creatorcontrib>Gitlin, Andrew ; Tao, Biaoshuai ; Balzano, Laura ; Lipor, John</creatorcontrib><description>Subspace clustering is a powerful generalization of clustering for high-dimensional data analysis, where low-rank cluster structure is leveraged for accurate inference. K-Subspaces (KSS), an alternating algorithm that mirrors K-means, is a classical approach for clustering with this model. Like K-means, KSS is highly sensitive to initialization, yet KSS has two major handicaps beyond this issue. First, unlike K-means, the KSS objective is NP-hard to approximate within any finite factor for a large enough subspace rank. Second, it is known that the 12 subspace estimation step is faulty when an estimated cluster has points from multiple subspaces. In this paper, we demonstrate both of these additional drawbacks, provide a proof for the former, and offer a solution to the latter through the use of a robust subspace recovery (RSR) method known as coherence pursuit (CoP). While many RSR methods have been developed in recent years, few can handle the case where the outliers are themselves low rank. We prove that CoP can handle low-rank outliers. This and its low computational complexity make it ideal to incorporate into the subspace estimation step of KSS. We demonstrate on synthetic data that CoP successfully rejects low-rank outliers and show that combining CoP with K-Subspaces yields state-of-the-art clustering performance on canonical benchmark datasets.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2018.2869363</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> K</tex-math> </inline-formula>-Subspaces (KSS) ; Algorithm design and analysis ; Clustering algorithms ; coherence pursuit (CoP) ; Principal component analysis ; robust principal component analysis (PCA) ; robust subspace recovery (RSR) ; Robustness ; Signal processing algorithms ; Subspace clustering</subject><ispartof>IEEE journal of selected topics in signal processing, 2018-12, Vol.12 (6), p.1575-1588</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-cfa17bf6d8c0b3001de2c0f2eb07c43b1dca58e1b02338662311ea0b7fd9bc43</citedby><cites>FETCH-LOGICAL-c311t-cfa17bf6d8c0b3001de2c0f2eb07c43b1dca58e1b02338662311ea0b7fd9bc43</cites><orcidid>0000-0003-4098-844X ; 0000-0002-0990-5493 ; 0000-0003-2914-123X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8457298$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8457298$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gitlin, Andrew</creatorcontrib><creatorcontrib>Tao, Biaoshuai</creatorcontrib><creatorcontrib>Balzano, Laura</creatorcontrib><creatorcontrib>Lipor, John</creatorcontrib><title>Improving K-Subspaces via Coherence Pursuit</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Subspace clustering is a powerful generalization of clustering for high-dimensional data analysis, where low-rank cluster structure is leveraged for accurate inference. K-Subspaces (KSS), an alternating algorithm that mirrors K-means, is a classical approach for clustering with this model. Like K-means, KSS is highly sensitive to initialization, yet KSS has two major handicaps beyond this issue. First, unlike K-means, the KSS objective is NP-hard to approximate within any finite factor for a large enough subspace rank. Second, it is known that the 12 subspace estimation step is faulty when an estimated cluster has points from multiple subspaces. In this paper, we demonstrate both of these additional drawbacks, provide a proof for the former, and offer a solution to the latter through the use of a robust subspace recovery (RSR) method known as coherence pursuit (CoP). While many RSR methods have been developed in recent years, few can handle the case where the outliers are themselves low rank. We prove that CoP can handle low-rank outliers. This and its low computational complexity make it ideal to incorporate into the subspace estimation step of KSS. We demonstrate on synthetic data that CoP successfully rejects low-rank outliers and show that combining CoP with K-Subspaces yields state-of-the-art clustering performance on canonical benchmark datasets.</description><subject><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> K</tex-math> </inline-formula>-Subspaces (KSS)</subject><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>coherence pursuit (CoP)</subject><subject>Principal component analysis</subject><subject>robust principal component analysis (PCA)</subject><subject>robust subspace recovery (RSR)</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Subspace clustering</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j1FLwzAUhYMoOKd_QF_6Lqn3JmmbPkrROR04aN9Lkt5qxa0jWQf-e1s3fDrn4XwHPsZuEWJEyB9ey6pcxwJQx0KnuUzlGZthrpCD0up86lJwlSTykl2F8AWQZCmqGbtfbna-P3Tbj-iNl4MNO-MoRIfOREX_SZ62jqL14MPQ7a_ZRWu-A92ccs6q56eqeOGr98WyeFxxJxH33LUGM9umjXZgJQA2JBy0gixkTkmLjTOJJrQgpNRpKkaKDNisbXI7DuZMHG-d70Pw1NY7322M_6kR6sm2_rOtJ9v6ZDtCd0eoI6J_QKskE7mWv8M5URs</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Gitlin, Andrew</creator><creator>Tao, Biaoshuai</creator><creator>Balzano, Laura</creator><creator>Lipor, John</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4098-844X</orcidid><orcidid>https://orcid.org/0000-0002-0990-5493</orcidid><orcidid>https://orcid.org/0000-0003-2914-123X</orcidid></search><sort><creationdate>201812</creationdate><title>Improving K-Subspaces via Coherence Pursuit</title><author>Gitlin, Andrew ; Tao, Biaoshuai ; Balzano, Laura ; Lipor, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-cfa17bf6d8c0b3001de2c0f2eb07c43b1dca58e1b02338662311ea0b7fd9bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic><inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> K</tex-math> </inline-formula>-Subspaces (KSS)</topic><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>coherence pursuit (CoP)</topic><topic>Principal component analysis</topic><topic>robust principal component analysis (PCA)</topic><topic>robust subspace recovery (RSR)</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Subspace clustering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gitlin, Andrew</creatorcontrib><creatorcontrib>Tao, Biaoshuai</creatorcontrib><creatorcontrib>Balzano, Laura</creatorcontrib><creatorcontrib>Lipor, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gitlin, Andrew</au><au>Tao, Biaoshuai</au><au>Balzano, Laura</au><au>Lipor, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving K-Subspaces via Coherence Pursuit</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2018-12</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>1575</spage><epage>1588</epage><pages>1575-1588</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Subspace clustering is a powerful generalization of clustering for high-dimensional data analysis, where low-rank cluster structure is leveraged for accurate inference. K-Subspaces (KSS), an alternating algorithm that mirrors K-means, is a classical approach for clustering with this model. Like K-means, KSS is highly sensitive to initialization, yet KSS has two major handicaps beyond this issue. First, unlike K-means, the KSS objective is NP-hard to approximate within any finite factor for a large enough subspace rank. Second, it is known that the 12 subspace estimation step is faulty when an estimated cluster has points from multiple subspaces. In this paper, we demonstrate both of these additional drawbacks, provide a proof for the former, and offer a solution to the latter through the use of a robust subspace recovery (RSR) method known as coherence pursuit (CoP). While many RSR methods have been developed in recent years, few can handle the case where the outliers are themselves low rank. We prove that CoP can handle low-rank outliers. This and its low computational complexity make it ideal to incorporate into the subspace estimation step of KSS. We demonstrate on synthetic data that CoP successfully rejects low-rank outliers and show that combining CoP with K-Subspaces yields state-of-the-art clustering performance on canonical benchmark datasets.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2018.2869363</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4098-844X</orcidid><orcidid>https://orcid.org/0000-0002-0990-5493</orcidid><orcidid>https://orcid.org/0000-0003-2914-123X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2018-12, Vol.12 (6), p.1575-1588 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_ieee_primary_8457298 |
source | IEEE Electronic Library (IEL) |
subjects | <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> K</tex-math> </inline-formula>-Subspaces (KSS) Algorithm design and analysis Clustering algorithms coherence pursuit (CoP) Principal component analysis robust principal component analysis (PCA) robust subspace recovery (RSR) Robustness Signal processing algorithms Subspace clustering |
title | Improving K-Subspaces via Coherence Pursuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20K-Subspaces%20via%20Coherence%20Pursuit&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Gitlin,%20Andrew&rft.date=2018-12&rft.volume=12&rft.issue=6&rft.spage=1575&rft.epage=1588&rft.pages=1575-1588&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2018.2869363&rft_dat=%3Ccrossref_RIE%3E10_1109_JSTSP_2018_2869363%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8457298&rfr_iscdi=true |