Visualizing GPR Data Using Spatial-Subband Configuration

In ground penetrating radar (GPR) applications, base-scale analysis can be a powerful tool to support data analysis and to build a consensus in data interpretation. In this paper, a study using the spatial-subband as a characterizing method to visualize structure attributes of GPR is presented. A dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.54651-54659
Hauptverfasser: Yuan, Da, Hong, Mei, An, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54659
container_issue
container_start_page 54651
container_title IEEE access
container_volume 6
creator Yuan, Da
Hong, Mei
An, Zhiyong
description In ground penetrating radar (GPR) applications, base-scale analysis can be a powerful tool to support data analysis and to build a consensus in data interpretation. In this paper, a study using the spatial-subband as a characterizing method to visualize structure attributes of GPR is presented. A dynamic framework is proposed to support the effective understanding and interpretation of structural patterns occluded in massive data. In this framework, variational mode decomposition is adopted to transform the GPR data into a set of subbands, each of which has a single mode and limited bandwidth. Meanwhile, the definable reconstruction provides a multiscale mapping for structural attributes. Significant patterns in the mapping are observed by employing both parameter adjustment and scale variation in data from a highway survey. The proposed approach can be extended to generate a broader interface with the parameter space for further exploration. Moreover, a multi-spatial map provides means of visualizing structural patterns of heterogeneous media.
doi_str_mv 10.1109/ACCESS.2018.2868797
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8454709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454709</ieee_id><doaj_id>oai_doaj_org_article_0329a1563e674fa68b61a315e25136f1</doaj_id><sourcerecordid>2455857012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2868c37264e15e8aad1338f59a7db3d648a56d33affaafe38a07e1e3c640bf623</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQXUTBUvsLegl4Tt3NZD9yLLHWQkEx1usySXbLlprUTXLQX29iSnEuM_OY997wCJkzumCMJg_LNF1l2SKiTC0iJZRM5BWZREwkIXAQ1__mWzJrmgPtS_UQlxOiPlzT4dH9uGofrF_fgkdsMdg1w5qdsHV4DLMuz7Eqg7SurNt3vkfr6o7cWDw2ZnbuU7J7Wr2nz-H2Zb1Jl9uwiKlqw-GhAmQkYsO4UYglA1CWJyjLHEoRK-SiBEBrEa0BhVQaZqAQMc2tiGBKNqNuWeNBn7z7RP-ta3T6D6j9XqNvXXE0mkKUIOMCjJCxRaFywRB624gzEJb1Wvej1snXX51pWn2oO1_17-so5lxxSdngCONV4eum8cZeXBnVQ-J6TFwPietz4j1rPrKcMebCUDGPJU3gF7MMelk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455857012</pqid></control><display><type>article</type><title>Visualizing GPR Data Using Spatial-Subband Configuration</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yuan, Da ; Hong, Mei ; An, Zhiyong</creator><creatorcontrib>Yuan, Da ; Hong, Mei ; An, Zhiyong</creatorcontrib><description>In ground penetrating radar (GPR) applications, base-scale analysis can be a powerful tool to support data analysis and to build a consensus in data interpretation. In this paper, a study using the spatial-subband as a characterizing method to visualize structure attributes of GPR is presented. A dynamic framework is proposed to support the effective understanding and interpretation of structural patterns occluded in massive data. In this framework, variational mode decomposition is adopted to transform the GPR data into a set of subbands, each of which has a single mode and limited bandwidth. Meanwhile, the definable reconstruction provides a multiscale mapping for structural attributes. Significant patterns in the mapping are observed by employing both parameter adjustment and scale variation in data from a highway survey. The proposed approach can be extended to generate a broader interface with the parameter space for further exploration. Moreover, a multi-spatial map provides means of visualizing structural patterns of heterogeneous media.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2868797</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data analysis ; data visualization ; dynamic mapping ; fuzzy c-means ; Ground penetrating radar ; Ground penetrating radar (GPR) ; Mapping ; Parameters ; Spatial data ; variational mode decomposition</subject><ispartof>IEEE access, 2018-01, Vol.6, p.54651-54659</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2868c37264e15e8aad1338f59a7db3d648a56d33affaafe38a07e1e3c640bf623</citedby><cites>FETCH-LOGICAL-c408t-2868c37264e15e8aad1338f59a7db3d648a56d33affaafe38a07e1e3c640bf623</cites><orcidid>0000-0002-2006-6643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454709$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yuan, Da</creatorcontrib><creatorcontrib>Hong, Mei</creatorcontrib><creatorcontrib>An, Zhiyong</creatorcontrib><title>Visualizing GPR Data Using Spatial-Subband Configuration</title><title>IEEE access</title><addtitle>Access</addtitle><description>In ground penetrating radar (GPR) applications, base-scale analysis can be a powerful tool to support data analysis and to build a consensus in data interpretation. In this paper, a study using the spatial-subband as a characterizing method to visualize structure attributes of GPR is presented. A dynamic framework is proposed to support the effective understanding and interpretation of structural patterns occluded in massive data. In this framework, variational mode decomposition is adopted to transform the GPR data into a set of subbands, each of which has a single mode and limited bandwidth. Meanwhile, the definable reconstruction provides a multiscale mapping for structural attributes. Significant patterns in the mapping are observed by employing both parameter adjustment and scale variation in data from a highway survey. The proposed approach can be extended to generate a broader interface with the parameter space for further exploration. Moreover, a multi-spatial map provides means of visualizing structural patterns of heterogeneous media.</description><subject>Data analysis</subject><subject>data visualization</subject><subject>dynamic mapping</subject><subject>fuzzy c-means</subject><subject>Ground penetrating radar</subject><subject>Ground penetrating radar (GPR)</subject><subject>Mapping</subject><subject>Parameters</subject><subject>Spatial data</subject><subject>variational mode decomposition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQXUTBUvsLegl4Tt3NZD9yLLHWQkEx1usySXbLlprUTXLQX29iSnEuM_OY997wCJkzumCMJg_LNF1l2SKiTC0iJZRM5BWZREwkIXAQ1__mWzJrmgPtS_UQlxOiPlzT4dH9uGofrF_fgkdsMdg1w5qdsHV4DLMuz7Eqg7SurNt3vkfr6o7cWDw2ZnbuU7J7Wr2nz-H2Zb1Jl9uwiKlqw-GhAmQkYsO4UYglA1CWJyjLHEoRK-SiBEBrEa0BhVQaZqAQMc2tiGBKNqNuWeNBn7z7RP-ta3T6D6j9XqNvXXE0mkKUIOMCjJCxRaFywRB624gzEJb1Wvej1snXX51pWn2oO1_17-so5lxxSdngCONV4eum8cZeXBnVQ-J6TFwPietz4j1rPrKcMebCUDGPJU3gF7MMelk</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Yuan, Da</creator><creator>Hong, Mei</creator><creator>An, Zhiyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2006-6643</orcidid></search><sort><creationdate>20180101</creationdate><title>Visualizing GPR Data Using Spatial-Subband Configuration</title><author>Yuan, Da ; Hong, Mei ; An, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2868c37264e15e8aad1338f59a7db3d648a56d33affaafe38a07e1e3c640bf623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data analysis</topic><topic>data visualization</topic><topic>dynamic mapping</topic><topic>fuzzy c-means</topic><topic>Ground penetrating radar</topic><topic>Ground penetrating radar (GPR)</topic><topic>Mapping</topic><topic>Parameters</topic><topic>Spatial data</topic><topic>variational mode decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Da</creatorcontrib><creatorcontrib>Hong, Mei</creatorcontrib><creatorcontrib>An, Zhiyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Da</au><au>Hong, Mei</au><au>An, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing GPR Data Using Spatial-Subband Configuration</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>54651</spage><epage>54659</epage><pages>54651-54659</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In ground penetrating radar (GPR) applications, base-scale analysis can be a powerful tool to support data analysis and to build a consensus in data interpretation. In this paper, a study using the spatial-subband as a characterizing method to visualize structure attributes of GPR is presented. A dynamic framework is proposed to support the effective understanding and interpretation of structural patterns occluded in massive data. In this framework, variational mode decomposition is adopted to transform the GPR data into a set of subbands, each of which has a single mode and limited bandwidth. Meanwhile, the definable reconstruction provides a multiscale mapping for structural attributes. Significant patterns in the mapping are observed by employing both parameter adjustment and scale variation in data from a highway survey. The proposed approach can be extended to generate a broader interface with the parameter space for further exploration. Moreover, a multi-spatial map provides means of visualizing structural patterns of heterogeneous media.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2868797</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2006-6643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.54651-54659
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8454709
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Data analysis
data visualization
dynamic mapping
fuzzy c-means
Ground penetrating radar
Ground penetrating radar (GPR)
Mapping
Parameters
Spatial data
variational mode decomposition
title Visualizing GPR Data Using Spatial-Subband Configuration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20GPR%20Data%20Using%20Spatial-Subband%20Configuration&rft.jtitle=IEEE%20access&rft.au=Yuan,%20Da&rft.date=2018-01-01&rft.volume=6&rft.spage=54651&rft.epage=54659&rft.pages=54651-54659&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2868797&rft_dat=%3Cproquest_ieee_%3E2455857012%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455857012&rft_id=info:pmid/&rft_ieee_id=8454709&rft_doaj_id=oai_doaj_org_article_0329a1563e674fa68b61a315e25136f1&rfr_iscdi=true