A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things

With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2019-06, Vol.6 (3), p.4804-4814
Hauptverfasser: Ning, Zhaolong, Dong, Peiran, Kong, Xiangjie, Xia, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4814
container_issue 3
container_start_page 4804
container_title IEEE internet of things journal
container_volume 6
creator Ning, Zhaolong
Dong, Peiran
Kong, Xiangjie
Xia, Feng
description With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.
doi_str_mv 10.1109/JIOT.2018.2868616
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8454442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454442</ieee_id><sourcerecordid>2244345477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2468305c13ff487c6a9473c23ceaf7e5d954a2b871d1fa96aa3dcd45ce6e99e43</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOY-gPgS8Lkz_5o2j2NMnSgTnM8hS2-2jq6pSSf47U3ZEJ_u5dzfORcOQreUTCkl6uFluVpPGaHllJWylFReoBHjrMiElOzy336NJjHuCSHJllMlR2g3w3PvOwimr78Bv5vQ16ZJ2qE79knzLV4513hT1e0Wf9gdHAA7H_Cb39QN4EW1hTM9AIvWbBqo8LLtIbTQY-_wepcu8QZdOdNEmJznGH0-Ltbz5-x19bScz14zy3PVZ0zIkpPcUu6cKAsrjRIFt4xbMK6AvFK5MGxTFrSizihpDK9sJXILEpQCwcfo_pTbBf91hNjrvT-GNr3UjAnBRS6KIlH0RNngYwzgdBfqgwk_mhI9dKqHTvXQqT53mjx3J08NAH98mQKFYPwX3jJy4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345477</pqid></control><display><type>article</type><title>A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things</title><source>IEEE Electronic Library (IEL)</source><creator>Ning, Zhaolong ; Dong, Peiran ; Kong, Xiangjie ; Xia, Feng</creator><creatorcontrib>Ning, Zhaolong ; Dong, Peiran ; Kong, Xiangjie ; Xia, Feng</creatorcontrib><description>With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2018.2868616</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computation offloading ; Computational modeling ; Computer simulation ; Delays ; Edge computing ; Electronic devices ; Evolutionary algorithms ; Integer programming ; Internet of Things ; Internet of Things (IoT) ; Iterative methods ; Linear programming ; Mixed integer ; Mobile computing ; mobile edge computing (MEC) ; partial computation offloading ; Resource allocation ; Resource management ; Servers ; Task analysis</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.4804-4814</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2468305c13ff487c6a9473c23ceaf7e5d954a2b871d1fa96aa3dcd45ce6e99e43</citedby><cites>FETCH-LOGICAL-c359t-2468305c13ff487c6a9473c23ceaf7e5d954a2b871d1fa96aa3dcd45ce6e99e43</cites><orcidid>0000-0002-7870-5524 ; 0000-0003-2592-6830 ; 0000-0002-1129-9218 ; 0000-0002-8324-1859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Dong, Peiran</creatorcontrib><creatorcontrib>Kong, Xiangjie</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><title>A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Evolutionary algorithms</subject><subject>Integer programming</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>partial computation offloading</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Servers</subject><subject>Task analysis</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOOY-gPgS8Lkz_5o2j2NMnSgTnM8hS2-2jq6pSSf47U3ZEJ_u5dzfORcOQreUTCkl6uFluVpPGaHllJWylFReoBHjrMiElOzy336NJjHuCSHJllMlR2g3w3PvOwimr78Bv5vQ16ZJ2qE79knzLV4513hT1e0Wf9gdHAA7H_Cb39QN4EW1hTM9AIvWbBqo8LLtIbTQY-_wepcu8QZdOdNEmJznGH0-Ltbz5-x19bScz14zy3PVZ0zIkpPcUu6cKAsrjRIFt4xbMK6AvFK5MGxTFrSizihpDK9sJXILEpQCwcfo_pTbBf91hNjrvT-GNr3UjAnBRS6KIlH0RNngYwzgdBfqgwk_mhI9dKqHTvXQqT53mjx3J08NAH98mQKFYPwX3jJy4w</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ning, Zhaolong</creator><creator>Dong, Peiran</creator><creator>Kong, Xiangjie</creator><creator>Xia, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-2592-6830</orcidid><orcidid>https://orcid.org/0000-0002-1129-9218</orcidid><orcidid>https://orcid.org/0000-0002-8324-1859</orcidid></search><sort><creationdate>20190601</creationdate><title>A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things</title><author>Ning, Zhaolong ; Dong, Peiran ; Kong, Xiangjie ; Xia, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2468305c13ff487c6a9473c23ceaf7e5d954a2b871d1fa96aa3dcd45ce6e99e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Evolutionary algorithms</topic><topic>Integer programming</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>partial computation offloading</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Servers</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ning, Zhaolong</creatorcontrib><creatorcontrib>Dong, Peiran</creatorcontrib><creatorcontrib>Kong, Xiangjie</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ning, Zhaolong</au><au>Dong, Peiran</au><au>Kong, Xiangjie</au><au>Xia, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>4804</spage><epage>4814</epage><pages>4804-4814</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the evolutionary development of latency sensitive applications, delay restriction is becoming an obstacle to run sophisticated applications on mobile devices. Partial computation offloading is promising to enable these applications to execute on mobile user equipments with low latency. However, most of the existing researches focus on either cloud computing or mobile edge computing (MEC) to offload tasks. In this paper, we comprehensively consider both of them and it is an early effort to study the cooperation of cloud computing and MEC in Internet of Things. We start from the single user computation offloading problem, where the MEC resources are not constrained. It can be solved by the branch and bound algorithm. Later on, the multiuser computation offloading problem is formulated as a mixed integer linear programming problem by considering resource competition among mobile users, which is NP-hard. Due to the computation complexity of the formulated problem, we design an iterative heuristic MEC resource allocation algorithm to make the offloading decision dynamically. Simulation results demonstrate that our algorithm outperforms the existing schemes in terms of execution latency and offloading efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2018.2868616</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7870-5524</orcidid><orcidid>https://orcid.org/0000-0003-2592-6830</orcidid><orcidid>https://orcid.org/0000-0002-1129-9218</orcidid><orcidid>https://orcid.org/0000-0002-8324-1859</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2019-06, Vol.6 (3), p.4804-4814
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_8454442
source IEEE Electronic Library (IEL)
subjects Algorithms
Cloud computing
Computation offloading
Computational modeling
Computer simulation
Delays
Edge computing
Electronic devices
Evolutionary algorithms
Integer programming
Internet of Things
Internet of Things (IoT)
Iterative methods
Linear programming
Mixed integer
Mobile computing
mobile edge computing (MEC)
partial computation offloading
Resource allocation
Resource management
Servers
Task analysis
title A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cooperative%20Partial%20Computation%20Offloading%20Scheme%20for%20Mobile%20Edge%20Computing%20Enabled%20Internet%20of%20Things&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Ning,%20Zhaolong&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=4804&rft.epage=4814&rft.pages=4804-4814&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2018.2868616&rft_dat=%3Cproquest_RIE%3E2244345477%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345477&rft_id=info:pmid/&rft_ieee_id=8454442&rfr_iscdi=true