Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission

This paper proposes a cyber-physical framework for vision-based automated vehicle path tracking. The framework has been developed in two parts: first, an intelligent relative vehicle displacement approach with an adaptive neural network controller; and second, multisampling data transmission archite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence 2019-08, Vol.3 (4), p.322-336
Hauptverfasser: Kar, Aniket K., Dhar, Narendra Kumar, Mishra, Pankaj Kumar, Verma, Nishchal K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 4
container_start_page 322
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 3
creator Kar, Aniket K.
Dhar, Narendra Kumar
Mishra, Pankaj Kumar
Verma, Nishchal K.
description This paper proposes a cyber-physical framework for vision-based automated vehicle path tracking. The framework has been developed in two parts: first, an intelligent relative vehicle displacement approach with an adaptive neural network controller; and second, multisampling data transmission architecture for any sensor-controller-actuator network. Uncertainties due to illumination effects, occlusion, and obscure images affect system performance drastically. The proposed relative vehicle displacement approach takes care of these uncertainties. The adaptive neural network controller generates precise control actions for stabilizing the system in minimum time. A reliable and robust data transmission architecture is of utmost importance for any Internet of Things application. Successful data transmission depends on several parameters, such as delay, communication channel behavior, and packet loss. A novel multisampling data transmission architecture addressing these issues has been proposed in this paper. Various cases of data transmission have been demonstrated on the time critical application of vision-based tracking by an automated guided vehicle. The results of real-time path tracking operation have been duly compared with other control techniques and data transmission architecture. The experimental results show the efficiency of the proposed system.
doi_str_mv 10.1109/TETCI.2018.2865205
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8454270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8454270</ieee_id><sourcerecordid>2296108225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-20bc722db2e68d4d4b52300b67d60cebd98362e1568fa058c2f6462c0202c72e3</originalsourceid><addsrcrecordid>eNpNkE1Pg0AQhonRxKb2D-iFxDN1dmCX5di0fjSp0Zj6cSPLMtitFOguNfHfC21jPM0cnmc-Xs-7ZDBmDJKb5e1yOh8jMDlGKTgCP_EGGMUsQMk_Tv_1597IuTUAYMJZyKOBt32hUrXmm_w3Whldkj8zrimVpg1VrT9pGlsrvfKL2vrPql35S6v0l6k-_Umumr04ravW1mVJ1n83HfG4K1vj1KYpe2ymWtVLldsY50xdXXhnhSodjY516L3edQ88BIun-_l0sgh0d1wbIGQ6RswzJCHzKI8yjiFAJuJcgKYsT2QokBgXslDApcZCRAI1IGAnUjj0rg9zuw-2O3Jtuq53tupWpoiJYCAReUfhgdK2ds5SkTbWbJT9SRmkfbrpPt20Tzc9pttJVwfJENGfICMeYQzhL4QvdxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296108225</pqid></control><display><type>article</type><title>Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission</title><source>IEEE Electronic Library (IEL)</source><creator>Kar, Aniket K. ; Dhar, Narendra Kumar ; Mishra, Pankaj Kumar ; Verma, Nishchal K.</creator><creatorcontrib>Kar, Aniket K. ; Dhar, Narendra Kumar ; Mishra, Pankaj Kumar ; Verma, Nishchal K.</creatorcontrib><description>This paper proposes a cyber-physical framework for vision-based automated vehicle path tracking. The framework has been developed in two parts: first, an intelligent relative vehicle displacement approach with an adaptive neural network controller; and second, multisampling data transmission architecture for any sensor-controller-actuator network. Uncertainties due to illumination effects, occlusion, and obscure images affect system performance drastically. The proposed relative vehicle displacement approach takes care of these uncertainties. The adaptive neural network controller generates precise control actions for stabilizing the system in minimum time. A reliable and robust data transmission architecture is of utmost importance for any Internet of Things application. Successful data transmission depends on several parameters, such as delay, communication channel behavior, and packet loss. A novel multisampling data transmission architecture addressing these issues has been proposed in this paper. Various cases of data transmission have been demonstrated on the time critical application of vision-based tracking by an automated guided vehicle. The results of real-time path tracking operation have been duly compared with other control techniques and data transmission architecture. The experimental results show the efficiency of the proposed system.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2018.2865205</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuators ; Adaptive control ; adaptive controller ; Adaptive systems ; Automated guided vehicles ; Automation ; Automotive parts ; Controllers ; cyber-physical system ; Data communication ; Data transmission ; Displacement ; Fuzzy systems ; Industries ; Internet of Things ; Neural networks ; Occlusion ; packet loss ; Path tracking ; Real time operation ; relative vehicle displacement ; round trip time delay ; Sensors ; Tracking control ; Uncertainty ; Vision</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2019-08, Vol.3 (4), p.322-336</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-20bc722db2e68d4d4b52300b67d60cebd98362e1568fa058c2f6462c0202c72e3</citedby><cites>FETCH-LOGICAL-c295t-20bc722db2e68d4d4b52300b67d60cebd98362e1568fa058c2f6462c0202c72e3</cites><orcidid>0000-0001-8752-5616 ; 0000-0002-5343-5812 ; 0000-0002-1530-7430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8454270$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8454270$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kar, Aniket K.</creatorcontrib><creatorcontrib>Dhar, Narendra Kumar</creatorcontrib><creatorcontrib>Mishra, Pankaj Kumar</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><title>Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>This paper proposes a cyber-physical framework for vision-based automated vehicle path tracking. The framework has been developed in two parts: first, an intelligent relative vehicle displacement approach with an adaptive neural network controller; and second, multisampling data transmission architecture for any sensor-controller-actuator network. Uncertainties due to illumination effects, occlusion, and obscure images affect system performance drastically. The proposed relative vehicle displacement approach takes care of these uncertainties. The adaptive neural network controller generates precise control actions for stabilizing the system in minimum time. A reliable and robust data transmission architecture is of utmost importance for any Internet of Things application. Successful data transmission depends on several parameters, such as delay, communication channel behavior, and packet loss. A novel multisampling data transmission architecture addressing these issues has been proposed in this paper. Various cases of data transmission have been demonstrated on the time critical application of vision-based tracking by an automated guided vehicle. The results of real-time path tracking operation have been duly compared with other control techniques and data transmission architecture. The experimental results show the efficiency of the proposed system.</description><subject>Actuators</subject><subject>Adaptive control</subject><subject>adaptive controller</subject><subject>Adaptive systems</subject><subject>Automated guided vehicles</subject><subject>Automation</subject><subject>Automotive parts</subject><subject>Controllers</subject><subject>cyber-physical system</subject><subject>Data communication</subject><subject>Data transmission</subject><subject>Displacement</subject><subject>Fuzzy systems</subject><subject>Industries</subject><subject>Internet of Things</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>packet loss</subject><subject>Path tracking</subject><subject>Real time operation</subject><subject>relative vehicle displacement</subject><subject>round trip time delay</subject><subject>Sensors</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Vision</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Pg0AQhonRxKb2D-iFxDN1dmCX5di0fjSp0Zj6cSPLMtitFOguNfHfC21jPM0cnmc-Xs-7ZDBmDJKb5e1yOh8jMDlGKTgCP_EGGMUsQMk_Tv_1597IuTUAYMJZyKOBt32hUrXmm_w3Whldkj8zrimVpg1VrT9pGlsrvfKL2vrPql35S6v0l6k-_Umumr04ravW1mVJ1n83HfG4K1vj1KYpe2ymWtVLldsY50xdXXhnhSodjY516L3edQ88BIun-_l0sgh0d1wbIGQ6RswzJCHzKI8yjiFAJuJcgKYsT2QokBgXslDApcZCRAI1IGAnUjj0rg9zuw-2O3Jtuq53tupWpoiJYCAReUfhgdK2ds5SkTbWbJT9SRmkfbrpPt20Tzc9pttJVwfJENGfICMeYQzhL4QvdxM</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Kar, Aniket K.</creator><creator>Dhar, Narendra Kumar</creator><creator>Mishra, Pankaj Kumar</creator><creator>Verma, Nishchal K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid><orcidid>https://orcid.org/0000-0002-5343-5812</orcidid><orcidid>https://orcid.org/0000-0002-1530-7430</orcidid></search><sort><creationdate>20190801</creationdate><title>Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission</title><author>Kar, Aniket K. ; Dhar, Narendra Kumar ; Mishra, Pankaj Kumar ; Verma, Nishchal K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-20bc722db2e68d4d4b52300b67d60cebd98362e1568fa058c2f6462c0202c72e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuators</topic><topic>Adaptive control</topic><topic>adaptive controller</topic><topic>Adaptive systems</topic><topic>Automated guided vehicles</topic><topic>Automation</topic><topic>Automotive parts</topic><topic>Controllers</topic><topic>cyber-physical system</topic><topic>Data communication</topic><topic>Data transmission</topic><topic>Displacement</topic><topic>Fuzzy systems</topic><topic>Industries</topic><topic>Internet of Things</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>packet loss</topic><topic>Path tracking</topic><topic>Real time operation</topic><topic>relative vehicle displacement</topic><topic>round trip time delay</topic><topic>Sensors</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kar, Aniket K.</creatorcontrib><creatorcontrib>Dhar, Narendra Kumar</creatorcontrib><creatorcontrib>Mishra, Pankaj Kumar</creatorcontrib><creatorcontrib>Verma, Nishchal K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kar, Aniket K.</au><au>Dhar, Narendra Kumar</au><au>Mishra, Pankaj Kumar</au><au>Verma, Nishchal K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>3</volume><issue>4</issue><spage>322</spage><epage>336</epage><pages>322-336</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>This paper proposes a cyber-physical framework for vision-based automated vehicle path tracking. The framework has been developed in two parts: first, an intelligent relative vehicle displacement approach with an adaptive neural network controller; and second, multisampling data transmission architecture for any sensor-controller-actuator network. Uncertainties due to illumination effects, occlusion, and obscure images affect system performance drastically. The proposed relative vehicle displacement approach takes care of these uncertainties. The adaptive neural network controller generates precise control actions for stabilizing the system in minimum time. A reliable and robust data transmission architecture is of utmost importance for any Internet of Things application. Successful data transmission depends on several parameters, such as delay, communication channel behavior, and packet loss. A novel multisampling data transmission architecture addressing these issues has been proposed in this paper. Various cases of data transmission have been demonstrated on the time critical application of vision-based tracking by an automated guided vehicle. The results of real-time path tracking operation have been duly compared with other control techniques and data transmission architecture. The experimental results show the efficiency of the proposed system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2018.2865205</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8752-5616</orcidid><orcidid>https://orcid.org/0000-0002-5343-5812</orcidid><orcidid>https://orcid.org/0000-0002-1530-7430</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2019-08, Vol.3 (4), p.322-336
issn 2471-285X
2471-285X
language eng
recordid cdi_ieee_primary_8454270
source IEEE Electronic Library (IEL)
subjects Actuators
Adaptive control
adaptive controller
Adaptive systems
Automated guided vehicles
Automation
Automotive parts
Controllers
cyber-physical system
Data communication
Data transmission
Displacement
Fuzzy systems
Industries
Internet of Things
Neural networks
Occlusion
packet loss
Path tracking
Real time operation
relative vehicle displacement
round trip time delay
Sensors
Tracking control
Uncertainty
Vision
title Relative Vehicle Displacement Approach for Path Tracking Adaptive Controller With Multisampling Data Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Vehicle%20Displacement%20Approach%20for%20Path%20Tracking%20Adaptive%20Controller%20With%20Multisampling%20Data%20Transmission&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Kar,%20Aniket%20K.&rft.date=2019-08-01&rft.volume=3&rft.issue=4&rft.spage=322&rft.epage=336&rft.pages=322-336&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2018.2865205&rft_dat=%3Cproquest_RIE%3E2296108225%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296108225&rft_id=info:pmid/&rft_ieee_id=8454270&rfr_iscdi=true