A framework for using the workspace medial axis in PRM planners
Probabilistic roadmap (PRM) planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major prob...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 vol.2 |
---|---|
container_issue | |
container_start_page | 1408 |
container_title | |
container_volume | 2 |
creator | Holleman, C. Kavraki, L.E. |
description | Probabilistic roadmap (PRM) planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major problem is finding valid configurations in tight areas, and many methods have been proposed to more effectively sample these regions. By constructing a skeleton-like subset of the free regions of the workspace, these heuristics can be strengthened. The skeleton provides a concise description of the workspace topology and an efficient means of finding points with maximal clearance from the obstacles. We examine the medial axis as a skeleton, including a method to compute an approximation to it. The medial axis is a two-equidistant surface in the workspace. We form a heuristic for finding difficult configurations using the medial axis, and demonstrate its effectiveness in a planner for rigid objects in a 3D workspace. |
doi_str_mv | 10.1109/ROBOT.2000.844795 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_844795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>844795</ieee_id><sourcerecordid>27535039</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1615-a9b097bc8cb02f4b997161d83d9c2a6e95ce800de2e96e914fed2fd07db771833</originalsourceid><addsrcrecordid>eNotkFtLAzEQhYMXsNb-AH3Kk29bJ8lmkzxJLfUClUqp4NuS3cxqdG8mLeq_d6XCgeEcvhmGQ8g5gyljYK7Wq5vVZsoBYKrTVBl5QEZcKpWAVi-HZGKUhkFCap2pIzJiICFJFTcn5DTG92FPiCwbkesZrYJt8KsLH7TqAt1F377S7RvSvyj2tkTaoPO2pvbbR-pb-rR-pH1t2xZDPCPHla0jTv7nmDzfLjbz-2S5unuYz5aJZxmTiTUFGFWUuiyAV2lhjBpyp4UzJbcZGlmiBnDI0QyOpRU6XjlQrlCKaSHG5HJ_tw_d5w7jNm98LLEe3sBuF3OupJAgzABe7EGPiHkffGPDT77vSPwChAFYHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>27535039</pqid></control><display><type>conference_proceeding</type><title>A framework for using the workspace medial axis in PRM planners</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Holleman, C. ; Kavraki, L.E.</creator><creatorcontrib>Holleman, C. ; Kavraki, L.E.</creatorcontrib><description>Probabilistic roadmap (PRM) planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major problem is finding valid configurations in tight areas, and many methods have been proposed to more effectively sample these regions. By constructing a skeleton-like subset of the free regions of the workspace, these heuristics can be strengthened. The skeleton provides a concise description of the workspace topology and an efficient means of finding points with maximal clearance from the obstacles. We examine the medial axis as a skeleton, including a method to compute an approximation to it. The medial axis is a two-equidistant surface in the workspace. We form a heuristic for finding difficult configurations using the medial axis, and demonstrate its effectiveness in a planner for rigid objects in a 3D workspace.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9780780358867</identifier><identifier>ISBN: 0780358864</identifier><identifier>EISSN: 2577-087X</identifier><identifier>DOI: 10.1109/ROBOT.2000.844795</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational geometry ; Computer industry ; Computer science ; Motion planning ; Orbital robotics ; Path planning ; Robot motion ; Service robots ; Skeleton ; Topology</subject><ispartof>Proceedings - IEEE International Conference on Robotics and Automation, 2000, Vol.2, p.1408-1413 vol.2</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/844795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/844795$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Holleman, C.</creatorcontrib><creatorcontrib>Kavraki, L.E.</creatorcontrib><title>A framework for using the workspace medial axis in PRM planners</title><title>Proceedings - IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>Probabilistic roadmap (PRM) planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major problem is finding valid configurations in tight areas, and many methods have been proposed to more effectively sample these regions. By constructing a skeleton-like subset of the free regions of the workspace, these heuristics can be strengthened. The skeleton provides a concise description of the workspace topology and an efficient means of finding points with maximal clearance from the obstacles. We examine the medial axis as a skeleton, including a method to compute an approximation to it. The medial axis is a two-equidistant surface in the workspace. We form a heuristic for finding difficult configurations using the medial axis, and demonstrate its effectiveness in a planner for rigid objects in a 3D workspace.</description><subject>Computational geometry</subject><subject>Computer industry</subject><subject>Computer science</subject><subject>Motion planning</subject><subject>Orbital robotics</subject><subject>Path planning</subject><subject>Robot motion</subject><subject>Service robots</subject><subject>Skeleton</subject><subject>Topology</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9780780358867</isbn><isbn>0780358864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkFtLAzEQhYMXsNb-AH3Kk29bJ8lmkzxJLfUClUqp4NuS3cxqdG8mLeq_d6XCgeEcvhmGQ8g5gyljYK7Wq5vVZsoBYKrTVBl5QEZcKpWAVi-HZGKUhkFCap2pIzJiICFJFTcn5DTG92FPiCwbkesZrYJt8KsLH7TqAt1F377S7RvSvyj2tkTaoPO2pvbbR-pb-rR-pH1t2xZDPCPHla0jTv7nmDzfLjbz-2S5unuYz5aJZxmTiTUFGFWUuiyAV2lhjBpyp4UzJbcZGlmiBnDI0QyOpRU6XjlQrlCKaSHG5HJ_tw_d5w7jNm98LLEe3sBuF3OupJAgzABe7EGPiHkffGPDT77vSPwChAFYHg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Holleman, C.</creator><creator>Kavraki, L.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2000</creationdate><title>A framework for using the workspace medial axis in PRM planners</title><author>Holleman, C. ; Kavraki, L.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1615-a9b097bc8cb02f4b997161d83d9c2a6e95ce800de2e96e914fed2fd07db771833</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational geometry</topic><topic>Computer industry</topic><topic>Computer science</topic><topic>Motion planning</topic><topic>Orbital robotics</topic><topic>Path planning</topic><topic>Robot motion</topic><topic>Service robots</topic><topic>Skeleton</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Holleman, C.</creatorcontrib><creatorcontrib>Kavraki, L.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Holleman, C.</au><au>Kavraki, L.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A framework for using the workspace medial axis in PRM planners</atitle><btitle>Proceedings - IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1408</spage><epage>1413 vol.2</epage><pages>1408-1413 vol.2</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9780780358867</isbn><isbn>0780358864</isbn><abstract>Probabilistic roadmap (PRM) planners have been very successful in path planning for a wide variety of problems, especially applications involving robots with many degrees of freedom. These planners randomly sample the configuration space, building up a roadmap that connects the samples. A major problem is finding valid configurations in tight areas, and many methods have been proposed to more effectively sample these regions. By constructing a skeleton-like subset of the free regions of the workspace, these heuristics can be strengthened. The skeleton provides a concise description of the workspace topology and an efficient means of finding points with maximal clearance from the obstacles. We examine the medial axis as a skeleton, including a method to compute an approximation to it. The medial axis is a two-equidistant surface in the workspace. We form a heuristic for finding difficult configurations using the medial axis, and demonstrate its effectiveness in a planner for rigid objects in a 3D workspace.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2000.844795</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | Proceedings - IEEE International Conference on Robotics and Automation, 2000, Vol.2, p.1408-1413 vol.2 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_844795 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational geometry Computer industry Computer science Motion planning Orbital robotics Path planning Robot motion Service robots Skeleton Topology |
title | A framework for using the workspace medial axis in PRM planners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20framework%20for%20using%20the%20workspace%20medial%20axis%20in%20PRM%20planners&rft.btitle=Proceedings%20-%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Holleman,%20C.&rft.date=2000&rft.volume=2&rft.spage=1408&rft.epage=1413%20vol.2&rft.pages=1408-1413%20vol.2&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9780780358867&rft.isbn_list=0780358864&rft_id=info:doi/10.1109/ROBOT.2000.844795&rft_dat=%3Cproquest_6IE%3E27535039%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27535039&rft_id=info:pmid/&rft_ieee_id=844795&rfr_iscdi=true |