Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices

This work presents a set of laboratory practices that can be carried out by students of Digital Design courses required in engineering programs like Electronics, Communications, Mechatronics, etc. The purpose of these lab is that the students develop their skills and confidence in the design of arit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2018-06, Vol.16 (6), p.1610-1615
Hauptverfasser: Vazquez, J., Carrasco, R., Ortegon, J., Castillo, A., Rocha-Gaso, M.-I, Cabanas, V.
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1615
container_issue 6
container_start_page 1610
container_title Revista IEEE América Latina
container_volume 16
creator Vazquez, J.
Carrasco, R.
Ortegon, J.
Castillo, A.
Rocha-Gaso, M.-I
Cabanas, V.
description This work presents a set of laboratory practices that can be carried out by students of Digital Design courses required in engineering programs like Electronics, Communications, Mechatronics, etc. The purpose of these lab is that the students develop their skills and confidence in the design of arithmetic hardware blocks by presenting them specific problems. In this sense, this paper shows a design methodology to be performed in a laboratory for the design of arithmetic blocks which can be implemented in microcontrollers and FPGAs. More specifically, we present the block design of a number's multiplicative inverse (), its square root () and the square root of its inverse (). The completion of these exercises requires the application of the Newton-Raphson algorithm, polynomial approximations of functions, difference equations and digital design. Students of our institution completed the lab practices and after analyzing the results of student surveys and classroom observations, we found out that completing these tasks significantly contributed to the students' training in the hardware design field.
doi_str_mv 10.1109/TLA.2018.8444156
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8444156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8444156</ieee_id><sourcerecordid>2117148786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5c01df82b62c5f14be53be1294263e759b595f2df39235991d97fd0243ee8d5b3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvgpcFz6n7mewea61WCChSz0s-Zmtqm62zKdJ_b0qreJqB93ln4CHkmrMR58zezfPxSDBuRkYpxXV6QgZcK5Mwa8Xpv_2cXMS4ZEya1MgBeZsVWH8XCPQBYrNoafB0EtabbQdIx9h0H2vomorer0L1GakPSKftomkBsGkXNC_KgEUXcEdfsah6EuIlOfPFKsLVcQ7J--N0Ppkl-cvT82ScJ5VIZZfoivHaG1GmotKeqxK0LIELq_oYMm1LbbUXtZdWSG0tr23mayaUBDC1LuWQ3B7ubjB8bSF2bhm22PYvneA848pkJu0pdqAqDDEieLfBZl3gznHm9uZcb87tzbmjub5yc6g0APCH_6Y_LO1pZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117148786</pqid></control><display><type>article</type><title>Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices</title><source>IEEE Electronic Library (IEL)</source><creator>Vazquez, J. ; Carrasco, R. ; Ortegon, J. ; Castillo, A. ; Rocha-Gaso, M.-I ; Cabanas, V.</creator><creatorcontrib>Vazquez, J. ; Carrasco, R. ; Ortegon, J. ; Castillo, A. ; Rocha-Gaso, M.-I ; Cabanas, V.</creatorcontrib><description>This work presents a set of laboratory practices that can be carried out by students of Digital Design courses required in engineering programs like Electronics, Communications, Mechatronics, etc. The purpose of these lab is that the students develop their skills and confidence in the design of arithmetic hardware blocks by presenting them specific problems. In this sense, this paper shows a design methodology to be performed in a laboratory for the design of arithmetic blocks which can be implemented in microcontrollers and FPGAs. More specifically, we present the block design of a number's multiplicative inverse (), its square root () and the square root of its inverse (). The completion of these exercises requires the application of the Newton-Raphson algorithm, polynomial approximations of functions, difference equations and digital design. Students of our institution completed the lab practices and after analyzing the results of student surveys and classroom observations, we found out that completing these tasks significantly contributed to the students' training in the hardware design field.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2018.8444156</identifier><language>eng ; spa</language><publisher>Los Alamitos: IEEE</publisher><subject>Arithmetic ; Computing arithmetic ; Design engineering ; Difference equations ; digital design ; engineering ; Field programmable gate arrays ; Functions (mathematics) ; Hardware ; hardware design ; IEEE transactions ; Laboratories ; laboratory practices ; Mathematical analysis ; Mathematical model ; Mechatronics ; Microcontrollers ; Newton method ; Newton-Raphson method ; Silicon compounds ; Students ; Table lookup</subject><ispartof>Revista IEEE América Latina, 2018-06, Vol.16 (6), p.1610-1615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5c01df82b62c5f14be53be1294263e759b595f2df39235991d97fd0243ee8d5b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8444156$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8444156$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vazquez, J.</creatorcontrib><creatorcontrib>Carrasco, R.</creatorcontrib><creatorcontrib>Ortegon, J.</creatorcontrib><creatorcontrib>Castillo, A.</creatorcontrib><creatorcontrib>Rocha-Gaso, M.-I</creatorcontrib><creatorcontrib>Cabanas, V.</creatorcontrib><title>Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work presents a set of laboratory practices that can be carried out by students of Digital Design courses required in engineering programs like Electronics, Communications, Mechatronics, etc. The purpose of these lab is that the students develop their skills and confidence in the design of arithmetic hardware blocks by presenting them specific problems. In this sense, this paper shows a design methodology to be performed in a laboratory for the design of arithmetic blocks which can be implemented in microcontrollers and FPGAs. More specifically, we present the block design of a number's multiplicative inverse (), its square root () and the square root of its inverse (). The completion of these exercises requires the application of the Newton-Raphson algorithm, polynomial approximations of functions, difference equations and digital design. Students of our institution completed the lab practices and after analyzing the results of student surveys and classroom observations, we found out that completing these tasks significantly contributed to the students' training in the hardware design field.</description><subject>Arithmetic</subject><subject>Computing arithmetic</subject><subject>Design engineering</subject><subject>Difference equations</subject><subject>digital design</subject><subject>engineering</subject><subject>Field programmable gate arrays</subject><subject>Functions (mathematics)</subject><subject>Hardware</subject><subject>hardware design</subject><subject>IEEE transactions</subject><subject>Laboratories</subject><subject>laboratory practices</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mechatronics</subject><subject>Microcontrollers</subject><subject>Newton method</subject><subject>Newton-Raphson method</subject><subject>Silicon compounds</subject><subject>Students</subject><subject>Table lookup</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvgpcFz6n7mewea61WCChSz0s-Zmtqm62zKdJ_b0qreJqB93ln4CHkmrMR58zezfPxSDBuRkYpxXV6QgZcK5Mwa8Xpv_2cXMS4ZEya1MgBeZsVWH8XCPQBYrNoafB0EtabbQdIx9h0H2vomorer0L1GakPSKftomkBsGkXNC_KgEUXcEdfsah6EuIlOfPFKsLVcQ7J--N0Ppkl-cvT82ScJ5VIZZfoivHaG1GmotKeqxK0LIELq_oYMm1LbbUXtZdWSG0tr23mayaUBDC1LuWQ3B7ubjB8bSF2bhm22PYvneA848pkJu0pdqAqDDEieLfBZl3gznHm9uZcb87tzbmjub5yc6g0APCH_6Y_LO1pZw</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Vazquez, J.</creator><creator>Carrasco, R.</creator><creator>Ortegon, J.</creator><creator>Castillo, A.</creator><creator>Rocha-Gaso, M.-I</creator><creator>Cabanas, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180601</creationdate><title>Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices</title><author>Vazquez, J. ; Carrasco, R. ; Ortegon, J. ; Castillo, A. ; Rocha-Gaso, M.-I ; Cabanas, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5c01df82b62c5f14be53be1294263e759b595f2df39235991d97fd0243ee8d5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2018</creationdate><topic>Arithmetic</topic><topic>Computing arithmetic</topic><topic>Design engineering</topic><topic>Difference equations</topic><topic>digital design</topic><topic>engineering</topic><topic>Field programmable gate arrays</topic><topic>Functions (mathematics)</topic><topic>Hardware</topic><topic>hardware design</topic><topic>IEEE transactions</topic><topic>Laboratories</topic><topic>laboratory practices</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mechatronics</topic><topic>Microcontrollers</topic><topic>Newton method</topic><topic>Newton-Raphson method</topic><topic>Silicon compounds</topic><topic>Students</topic><topic>Table lookup</topic><toplevel>online_resources</toplevel><creatorcontrib>Vazquez, J.</creatorcontrib><creatorcontrib>Carrasco, R.</creatorcontrib><creatorcontrib>Ortegon, J.</creatorcontrib><creatorcontrib>Castillo, A.</creatorcontrib><creatorcontrib>Rocha-Gaso, M.-I</creatorcontrib><creatorcontrib>Cabanas, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vazquez, J.</au><au>Carrasco, R.</au><au>Ortegon, J.</au><au>Castillo, A.</au><au>Rocha-Gaso, M.-I</au><au>Cabanas, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>16</volume><issue>6</issue><spage>1610</spage><epage>1615</epage><pages>1610-1615</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work presents a set of laboratory practices that can be carried out by students of Digital Design courses required in engineering programs like Electronics, Communications, Mechatronics, etc. The purpose of these lab is that the students develop their skills and confidence in the design of arithmetic hardware blocks by presenting them specific problems. In this sense, this paper shows a design methodology to be performed in a laboratory for the design of arithmetic blocks which can be implemented in microcontrollers and FPGAs. More specifically, we present the block design of a number's multiplicative inverse (), its square root () and the square root of its inverse (). The completion of these exercises requires the application of the Newton-Raphson algorithm, polynomial approximations of functions, difference equations and digital design. Students of our institution completed the lab practices and after analyzing the results of student surveys and classroom observations, we found out that completing these tasks significantly contributed to the students' training in the hardware design field.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2018.8444156</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2018-06, Vol.16 (6), p.1610-1615
issn 1548-0992
1548-0992
language eng ; spa
recordid cdi_ieee_primary_8444156
source IEEE Electronic Library (IEL)
subjects Arithmetic
Computing arithmetic
Design engineering
Difference equations
digital design
engineering
Field programmable gate arrays
Functions (mathematics)
Hardware
hardware design
IEEE transactions
Laboratories
laboratory practices
Mathematical analysis
Mathematical model
Mechatronics
Microcontrollers
Newton method
Newton-Raphson method
Silicon compounds
Students
Table lookup
title Hardware Design of Computer Arithmetic Blocks for Engineering Laboratory Practices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardware%20Design%20of%20Computer%20Arithmetic%20Blocks%20for%20Engineering%20Laboratory%20Practices&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Vazquez,%20J.&rft.date=2018-06-01&rft.volume=16&rft.issue=6&rft.spage=1610&rft.epage=1615&rft.pages=1610-1615&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2018.8444156&rft_dat=%3Cproquest_RIE%3E2117148786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117148786&rft_id=info:pmid/&rft_ieee_id=8444156&rfr_iscdi=true