Learning Policies for Markov Decision Processes From Data

We consider the problem of learning a policy for a Markov decision process consistent with data captured on the state-action pairs followed by the policy. We parameterize the policy using features associated with the state-action pairs. The features can be handcrafted or defined using kernel functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-06, Vol.64 (6), p.2298-2309
Hauptverfasser: Hanawal, Manjesh Kumar, Liu, Hao, Zhu, Henghui, Paschalidis, Ioannis Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!