Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions

Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2019-07, Vol.23 (4), p.1526-1534
Hauptverfasser: Waris, Asim, Niazi, Imran K., Jamil, Mohsin, Englehart, Kevin, Jensen, Winnie, Kamavuako, Ernest Nlandu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1534
container_issue 4
container_start_page 1526
container_title IEEE journal of biomedical and health informatics
container_volume 23
creator Waris, Asim
Niazi, Imran K.
Jamil, Mohsin
Englehart, Kevin
Jensen, Winnie
Kamavuako, Ernest Nlandu
description Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P
doi_str_mv 10.1109/JBHI.2018.2864335
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8429072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8429072</ieee_id><sourcerecordid>2253461979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</originalsourceid><addsrcrecordid>eNpdkEtPAjEQgBujEYL8AGNiNvHiZbHv3R6FIGBAL3huut02lixb3LIm_Hu74XGwl2lnvplMPwDuERwhBMXL-3i-GGGI8hHOOSWEXYE-RjxPMYb59fmOBO2BYQgbGE8eU4Lfgh6BCPIMoj74WLXV3pXqkEx_VdWqvfN14m2yNvq7dj-tCYn1TTJdzdKxCqZMJpUKwVmnL-hc1WWy8t0z3IEbq6pghqc4AF9v0_Vkni4_Z4vJ6zLVlMJ9SlguDMcaWltkVtuSZ4XCBadUM8op4gwzTVWmSoasFQUvtDIUKhqThGpOBuD5OHfX-G7Jvdy6oE1Vqdr4NsioIM8YiZ-M6NM_dOPbpo7bSYwZoRyJTEQKHSnd-BAaY-WucVvVHCSCsvMtO9-y8y1PvmPP42lyW2xNeek4243AwxFwxphLOadYwAyTPx7NgnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253461979</pqid></control><display><type>article</type><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><source>IEEE Electronic Library (IEL)</source><creator>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</creator><creatorcontrib>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</creatorcontrib><description>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P &lt;; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P &lt;; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2864335</identifier><identifier>PMID: 30106701</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adolescent ; Adult ; Algorithms ; Artificial Limbs ; Artificial neural networks ; Classification ; Classifiers ; Comparative analysis ; Decision analysis ; Decision trees ; Discriminant analysis ; Electrodes ; Electromyography ; Electromyography - classification ; Electromyography - methods ; Hand - physiology ; Humans ; intra-muscular ; Male ; Middle Aged ; Movement - physiology ; Muscle, Skeletal - physiology ; Muscles ; myoelectric control ; Myoelectricity ; Neural networks ; Neural Networks, Computer ; pattern recognition ; Pattern Recognition, Automated - methods ; Prostheses ; Prosthetics ; Signal Processing, Computer-Assisted ; Support Vector Machine ; Support vector machines ; Surface impedance ; Time dependence ; Variance analysis ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1526-1534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</citedby><cites>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</cites><orcidid>0000-0001-8752-7224 ; 0000-0003-4525-1121 ; 0000-0001-6846-2090 ; 0000-0002-8835-2451 ; 0000-0002-0190-0700 ; 0000-0001-9510-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8429072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8429072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Niazi, Imran K.</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><creatorcontrib>Englehart, Kevin</creatorcontrib><creatorcontrib>Jensen, Winnie</creatorcontrib><creatorcontrib>Kamavuako, Ernest Nlandu</creatorcontrib><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P &lt;; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P &lt;; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Limbs</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Comparative analysis</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - classification</subject><subject>Electromyography - methods</subject><subject>Hand - physiology</subject><subject>Humans</subject><subject>intra-muscular</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>myoelectric control</subject><subject>Myoelectricity</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Surface impedance</subject><subject>Time dependence</subject><subject>Variance analysis</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtPAjEQgBujEYL8AGNiNvHiZbHv3R6FIGBAL3huut02lixb3LIm_Hu74XGwl2lnvplMPwDuERwhBMXL-3i-GGGI8hHOOSWEXYE-RjxPMYb59fmOBO2BYQgbGE8eU4Lfgh6BCPIMoj74WLXV3pXqkEx_VdWqvfN14m2yNvq7dj-tCYn1TTJdzdKxCqZMJpUKwVmnL-hc1WWy8t0z3IEbq6pghqc4AF9v0_Vkni4_Z4vJ6zLVlMJ9SlguDMcaWltkVtuSZ4XCBadUM8op4gwzTVWmSoasFQUvtDIUKhqThGpOBuD5OHfX-G7Jvdy6oE1Vqdr4NsioIM8YiZ-M6NM_dOPbpo7bSYwZoRyJTEQKHSnd-BAaY-WucVvVHCSCsvMtO9-y8y1PvmPP42lyW2xNeek4243AwxFwxphLOadYwAyTPx7NgnI</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Waris, Asim</creator><creator>Niazi, Imran K.</creator><creator>Jamil, Mohsin</creator><creator>Englehart, Kevin</creator><creator>Jensen, Winnie</creator><creator>Kamavuako, Ernest Nlandu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8752-7224</orcidid><orcidid>https://orcid.org/0000-0003-4525-1121</orcidid><orcidid>https://orcid.org/0000-0001-6846-2090</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0001-9510-8847</orcidid></search><sort><creationdate>201907</creationdate><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><author>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Limbs</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Comparative analysis</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - classification</topic><topic>Electromyography - methods</topic><topic>Hand - physiology</topic><topic>Humans</topic><topic>intra-muscular</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>myoelectric control</topic><topic>Myoelectricity</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Surface impedance</topic><topic>Time dependence</topic><topic>Variance analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Niazi, Imran K.</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><creatorcontrib>Englehart, Kevin</creatorcontrib><creatorcontrib>Jensen, Winnie</creatorcontrib><creatorcontrib>Kamavuako, Ernest Nlandu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Waris, Asim</au><au>Niazi, Imran K.</au><au>Jamil, Mohsin</au><au>Englehart, Kevin</au><au>Jensen, Winnie</au><au>Kamavuako, Ernest Nlandu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-07</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1526</spage><epage>1534</epage><pages>1526-1534</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P &lt;; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P &lt;; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106701</pmid><doi>10.1109/JBHI.2018.2864335</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8752-7224</orcidid><orcidid>https://orcid.org/0000-0003-4525-1121</orcidid><orcidid>https://orcid.org/0000-0001-6846-2090</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0001-9510-8847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1526-1534
issn 2168-2194
2168-2208
language eng
recordid cdi_ieee_primary_8429072
source IEEE Electronic Library (IEL)
subjects Adolescent
Adult
Algorithms
Artificial Limbs
Artificial neural networks
Classification
Classifiers
Comparative analysis
Decision analysis
Decision trees
Discriminant analysis
Electrodes
Electromyography
Electromyography - classification
Electromyography - methods
Hand - physiology
Humans
intra-muscular
Male
Middle Aged
Movement - physiology
Muscle, Skeletal - physiology
Muscles
myoelectric control
Myoelectricity
Neural networks
Neural Networks, Computer
pattern recognition
Pattern Recognition, Automated - methods
Prostheses
Prosthetics
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
Surface impedance
Time dependence
Variance analysis
Young Adult
title Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiday%20Evaluation%20of%20Techniques%20for%20EMG-Based%20Classification%20of%20Hand%20Motions&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Waris,%20Asim&rft.date=2019-07&rft.volume=23&rft.issue=4&rft.spage=1526&rft.epage=1534&rft.pages=1526-1534&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2864335&rft_dat=%3Cproquest_RIE%3E2253461979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253461979&rft_id=info:pmid/30106701&rft_ieee_id=8429072&rfr_iscdi=true