Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions
Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-07, Vol.23 (4), p.1526-1534 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1534 |
---|---|
container_issue | 4 |
container_start_page | 1526 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 23 |
creator | Waris, Asim Niazi, Imran K. Jamil, Mohsin Englehart, Kevin Jensen, Winnie Kamavuako, Ernest Nlandu |
description | Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P |
doi_str_mv | 10.1109/JBHI.2018.2864335 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8429072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8429072</ieee_id><sourcerecordid>2253461979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</originalsourceid><addsrcrecordid>eNpdkEtPAjEQgBujEYL8AGNiNvHiZbHv3R6FIGBAL3huut02lixb3LIm_Hu74XGwl2lnvplMPwDuERwhBMXL-3i-GGGI8hHOOSWEXYE-RjxPMYb59fmOBO2BYQgbGE8eU4Lfgh6BCPIMoj74WLXV3pXqkEx_VdWqvfN14m2yNvq7dj-tCYn1TTJdzdKxCqZMJpUKwVmnL-hc1WWy8t0z3IEbq6pghqc4AF9v0_Vkni4_Z4vJ6zLVlMJ9SlguDMcaWltkVtuSZ4XCBadUM8op4gwzTVWmSoasFQUvtDIUKhqThGpOBuD5OHfX-G7Jvdy6oE1Vqdr4NsioIM8YiZ-M6NM_dOPbpo7bSYwZoRyJTEQKHSnd-BAaY-WucVvVHCSCsvMtO9-y8y1PvmPP42lyW2xNeek4243AwxFwxphLOadYwAyTPx7NgnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253461979</pqid></control><display><type>article</type><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><source>IEEE Electronic Library (IEL)</source><creator>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</creator><creatorcontrib>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</creatorcontrib><description>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P <; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P <; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2018.2864335</identifier><identifier>PMID: 30106701</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adolescent ; Adult ; Algorithms ; Artificial Limbs ; Artificial neural networks ; Classification ; Classifiers ; Comparative analysis ; Decision analysis ; Decision trees ; Discriminant analysis ; Electrodes ; Electromyography ; Electromyography - classification ; Electromyography - methods ; Hand - physiology ; Humans ; intra-muscular ; Male ; Middle Aged ; Movement - physiology ; Muscle, Skeletal - physiology ; Muscles ; myoelectric control ; Myoelectricity ; Neural networks ; Neural Networks, Computer ; pattern recognition ; Pattern Recognition, Automated - methods ; Prostheses ; Prosthetics ; Signal Processing, Computer-Assisted ; Support Vector Machine ; Support vector machines ; Surface impedance ; Time dependence ; Variance analysis ; Young Adult</subject><ispartof>IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1526-1534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</citedby><cites>FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</cites><orcidid>0000-0001-8752-7224 ; 0000-0003-4525-1121 ; 0000-0001-6846-2090 ; 0000-0002-8835-2451 ; 0000-0002-0190-0700 ; 0000-0001-9510-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8429072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8429072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Niazi, Imran K.</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><creatorcontrib>Englehart, Kevin</creatorcontrib><creatorcontrib>Jensen, Winnie</creatorcontrib><creatorcontrib>Kamavuako, Ernest Nlandu</creatorcontrib><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P <; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P <; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Limbs</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Comparative analysis</subject><subject>Decision analysis</subject><subject>Decision trees</subject><subject>Discriminant analysis</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - classification</subject><subject>Electromyography - methods</subject><subject>Hand - physiology</subject><subject>Humans</subject><subject>intra-muscular</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Movement - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>myoelectric control</subject><subject>Myoelectricity</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Surface impedance</subject><subject>Time dependence</subject><subject>Variance analysis</subject><subject>Young Adult</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkEtPAjEQgBujEYL8AGNiNvHiZbHv3R6FIGBAL3huut02lixb3LIm_Hu74XGwl2lnvplMPwDuERwhBMXL-3i-GGGI8hHOOSWEXYE-RjxPMYb59fmOBO2BYQgbGE8eU4Lfgh6BCPIMoj74WLXV3pXqkEx_VdWqvfN14m2yNvq7dj-tCYn1TTJdzdKxCqZMJpUKwVmnL-hc1WWy8t0z3IEbq6pghqc4AF9v0_Vkni4_Z4vJ6zLVlMJ9SlguDMcaWltkVtuSZ4XCBadUM8op4gwzTVWmSoasFQUvtDIUKhqThGpOBuD5OHfX-G7Jvdy6oE1Vqdr4NsioIM8YiZ-M6NM_dOPbpo7bSYwZoRyJTEQKHSnd-BAaY-WucVvVHCSCsvMtO9-y8y1PvmPP42lyW2xNeek4243AwxFwxphLOadYwAyTPx7NgnI</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Waris, Asim</creator><creator>Niazi, Imran K.</creator><creator>Jamil, Mohsin</creator><creator>Englehart, Kevin</creator><creator>Jensen, Winnie</creator><creator>Kamavuako, Ernest Nlandu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8752-7224</orcidid><orcidid>https://orcid.org/0000-0003-4525-1121</orcidid><orcidid>https://orcid.org/0000-0001-6846-2090</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0001-9510-8847</orcidid></search><sort><creationdate>201907</creationdate><title>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</title><author>Waris, Asim ; Niazi, Imran K. ; Jamil, Mohsin ; Englehart, Kevin ; Jensen, Winnie ; Kamavuako, Ernest Nlandu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3589e62c0ffb7fcfd67ba2b644c546416525c4a7ad51ff9b6bcae40a4c4a34c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Limbs</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Comparative analysis</topic><topic>Decision analysis</topic><topic>Decision trees</topic><topic>Discriminant analysis</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - classification</topic><topic>Electromyography - methods</topic><topic>Hand - physiology</topic><topic>Humans</topic><topic>intra-muscular</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Movement - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>myoelectric control</topic><topic>Myoelectricity</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Surface impedance</topic><topic>Time dependence</topic><topic>Variance analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waris, Asim</creatorcontrib><creatorcontrib>Niazi, Imran K.</creatorcontrib><creatorcontrib>Jamil, Mohsin</creatorcontrib><creatorcontrib>Englehart, Kevin</creatorcontrib><creatorcontrib>Jensen, Winnie</creatorcontrib><creatorcontrib>Kamavuako, Ernest Nlandu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Waris, Asim</au><au>Niazi, Imran K.</au><au>Jamil, Mohsin</au><au>Englehart, Kevin</au><au>Jensen, Winnie</au><au>Kamavuako, Ernest Nlandu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2019-07</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>1526</spage><epage>1534</epage><pages>1526-1534</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Currently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P <; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P <; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106701</pmid><doi>10.1109/JBHI.2018.2864335</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8752-7224</orcidid><orcidid>https://orcid.org/0000-0003-4525-1121</orcidid><orcidid>https://orcid.org/0000-0001-6846-2090</orcidid><orcidid>https://orcid.org/0000-0002-8835-2451</orcidid><orcidid>https://orcid.org/0000-0002-0190-0700</orcidid><orcidid>https://orcid.org/0000-0001-9510-8847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2019-07, Vol.23 (4), p.1526-1534 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_8429072 |
source | IEEE Electronic Library (IEL) |
subjects | Adolescent Adult Algorithms Artificial Limbs Artificial neural networks Classification Classifiers Comparative analysis Decision analysis Decision trees Discriminant analysis Electrodes Electromyography Electromyography - classification Electromyography - methods Hand - physiology Humans intra-muscular Male Middle Aged Movement - physiology Muscle, Skeletal - physiology Muscles myoelectric control Myoelectricity Neural networks Neural Networks, Computer pattern recognition Pattern Recognition, Automated - methods Prostheses Prosthetics Signal Processing, Computer-Assisted Support Vector Machine Support vector machines Surface impedance Time dependence Variance analysis Young Adult |
title | Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiday%20Evaluation%20of%20Techniques%20for%20EMG-Based%20Classification%20of%20Hand%20Motions&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Waris,%20Asim&rft.date=2019-07&rft.volume=23&rft.issue=4&rft.spage=1526&rft.epage=1534&rft.pages=1526-1534&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2018.2864335&rft_dat=%3Cproquest_RIE%3E2253461979%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253461979&rft_id=info:pmid/30106701&rft_ieee_id=8429072&rfr_iscdi=true |