Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images
This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It group...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2018-11, Vol.15 (11), p.1775-1779 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1779 |
---|---|
container_issue | 11 |
container_start_page | 1775 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 15 |
creator | Qin, Xuebin He, Shida Yang, Xiucheng Dehghan, Masood Qin, Qiming Martin, Jagersand |
description | This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph \textit {G(V,E)} is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method. |
doi_str_mv | 10.1109/LGRS.2018.2857719 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8428417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8428417</ieee_id><sourcerecordid>2130612012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZLejmH-4DBYH4geBGyNJ0ZXTuTRty_t3XDq_NyeN5z4EHoFsgAgGQPi-nqeUAJyAGVXAjIzlAPOJcJ4QLOu8x4wjP5fomuQtgSQpmUooc-RsZErxuLl7EpXWXx00_jtWlcXeG6wPMqd98uj7rEj9GVuas2eOLrHX6z_oBnbvOZrGyoy_hXWO4bZ1p0vtMbG67RRaHLYG9Os49eJ08v41myWE7n49EiMTRLm0RozVmeS5ZTuTaFSQWRRnJGga5FuxbWUJlnUjBtIRMFgGSFZbAuMmIFH6Z9dH-8u_f1V7ShUds6-qp9qSikZAitF9pScKSMr0PwtlB773baHxQQ1TlUnUPVOVQnh23n7thx1tp_XjIqGYj0F8czbYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130612012</pqid></control><display><type>article</type><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</creator><creatorcontrib>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</creatorcontrib><description>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph <inline-formula> <tex-math notation="LaTeX">\textit {G(V,E)} </tex-math></inline-formula> is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2857719</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Building recognition ; Buildings ; Data mining ; Feature extraction ; graph optimization ; High resolution ; Image edge detection ; Image resolution ; Image segmentation ; Methods ; Optimization ; outline extraction ; perceptual grouping ; Resolution ; Roofs ; Searching ; Segments ; Shape ; Shortest-path problems ; State of the art</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-11, Vol.15 (11), p.1775-1779</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</citedby><cites>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</cites><orcidid>0000-0003-2293-6101 ; 0000-0001-5134-9614 ; 0000-0002-9042-7192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8428417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8428417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>He, Shida</creatorcontrib><creatorcontrib>Yang, Xiucheng</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Martin, Jagersand</creatorcontrib><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph <inline-formula> <tex-math notation="LaTeX">\textit {G(V,E)} </tex-math></inline-formula> is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</description><subject>Building recognition</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>graph optimization</subject><subject>High resolution</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Optimization</subject><subject>outline extraction</subject><subject>perceptual grouping</subject><subject>Resolution</subject><subject>Roofs</subject><subject>Searching</subject><subject>Segments</subject><subject>Shape</subject><subject>Shortest-path problems</subject><subject>State of the art</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZLejmH-4DBYH4geBGyNJ0ZXTuTRty_t3XDq_NyeN5z4EHoFsgAgGQPi-nqeUAJyAGVXAjIzlAPOJcJ4QLOu8x4wjP5fomuQtgSQpmUooc-RsZErxuLl7EpXWXx00_jtWlcXeG6wPMqd98uj7rEj9GVuas2eOLrHX6z_oBnbvOZrGyoy_hXWO4bZ1p0vtMbG67RRaHLYG9Os49eJ08v41myWE7n49EiMTRLm0RozVmeS5ZTuTaFSQWRRnJGga5FuxbWUJlnUjBtIRMFgGSFZbAuMmIFH6Z9dH-8u_f1V7ShUds6-qp9qSikZAitF9pScKSMr0PwtlB773baHxQQ1TlUnUPVOVQnh23n7thx1tp_XjIqGYj0F8czbYI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Qin, Xuebin</creator><creator>He, Shida</creator><creator>Yang, Xiucheng</creator><creator>Dehghan, Masood</creator><creator>Qin, Qiming</creator><creator>Martin, Jagersand</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2293-6101</orcidid><orcidid>https://orcid.org/0000-0001-5134-9614</orcidid><orcidid>https://orcid.org/0000-0002-9042-7192</orcidid></search><sort><creationdate>20181101</creationdate><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><author>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Building recognition</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>graph optimization</topic><topic>High resolution</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Optimization</topic><topic>outline extraction</topic><topic>perceptual grouping</topic><topic>Resolution</topic><topic>Roofs</topic><topic>Searching</topic><topic>Segments</topic><topic>Shape</topic><topic>Shortest-path problems</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>He, Shida</creatorcontrib><creatorcontrib>Yang, Xiucheng</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Martin, Jagersand</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Xuebin</au><au>He, Shida</au><au>Yang, Xiucheng</au><au>Dehghan, Masood</au><au>Qin, Qiming</au><au>Martin, Jagersand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>15</volume><issue>11</issue><spage>1775</spage><epage>1779</epage><pages>1775-1779</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph <inline-formula> <tex-math notation="LaTeX">\textit {G(V,E)} </tex-math></inline-formula> is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2857719</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2293-6101</orcidid><orcidid>https://orcid.org/0000-0001-5134-9614</orcidid><orcidid>https://orcid.org/0000-0002-9042-7192</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2018-11, Vol.15 (11), p.1775-1779 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_8428417 |
source | IEEE Electronic Library (IEL) |
subjects | Building recognition Buildings Data mining Feature extraction graph optimization High resolution Image edge detection Image resolution Image segmentation Methods Optimization outline extraction perceptual grouping Resolution Roofs Searching Segments Shape Shortest-path problems State of the art |
title | Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Outline%20Extraction%20of%20Individual%20Building%20From%20Very%20High-Resolution%20Optical%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qin,%20Xuebin&rft.date=2018-11-01&rft.volume=15&rft.issue=11&rft.spage=1775&rft.epage=1779&rft.pages=1775-1779&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2857719&rft_dat=%3Cproquest_RIE%3E2130612012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130612012&rft_id=info:pmid/&rft_ieee_id=8428417&rfr_iscdi=true |