Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images

This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2018-11, Vol.15 (11), p.1775-1779
Hauptverfasser: Qin, Xuebin, He, Shida, Yang, Xiucheng, Dehghan, Masood, Qin, Qiming, Martin, Jagersand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 11
container_start_page 1775
container_title IEEE geoscience and remote sensing letters
container_volume 15
creator Qin, Xuebin
He, Shida
Yang, Xiucheng
Dehghan, Masood
Qin, Qiming
Martin, Jagersand
description This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph \textit {G(V,E)} is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.
doi_str_mv 10.1109/LGRS.2018.2857719
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8428417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8428417</ieee_id><sourcerecordid>2130612012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZLejmH-4DBYH4geBGyNJ0ZXTuTRty_t3XDq_NyeN5z4EHoFsgAgGQPi-nqeUAJyAGVXAjIzlAPOJcJ4QLOu8x4wjP5fomuQtgSQpmUooc-RsZErxuLl7EpXWXx00_jtWlcXeG6wPMqd98uj7rEj9GVuas2eOLrHX6z_oBnbvOZrGyoy_hXWO4bZ1p0vtMbG67RRaHLYG9Os49eJ08v41myWE7n49EiMTRLm0RozVmeS5ZTuTaFSQWRRnJGga5FuxbWUJlnUjBtIRMFgGSFZbAuMmIFH6Z9dH-8u_f1V7ShUds6-qp9qSikZAitF9pScKSMr0PwtlB773baHxQQ1TlUnUPVOVQnh23n7thx1tp_XjIqGYj0F8czbYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130612012</pqid></control><display><type>article</type><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</creator><creatorcontrib>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</creatorcontrib><description>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\textit {G(V,E)} &lt;/tex-math&gt;&lt;/inline-formula&gt; is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2018.2857719</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Building recognition ; Buildings ; Data mining ; Feature extraction ; graph optimization ; High resolution ; Image edge detection ; Image resolution ; Image segmentation ; Methods ; Optimization ; outline extraction ; perceptual grouping ; Resolution ; Roofs ; Searching ; Segments ; Shape ; Shortest-path problems ; State of the art</subject><ispartof>IEEE geoscience and remote sensing letters, 2018-11, Vol.15 (11), p.1775-1779</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</citedby><cites>FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</cites><orcidid>0000-0003-2293-6101 ; 0000-0001-5134-9614 ; 0000-0002-9042-7192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8428417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8428417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>He, Shida</creatorcontrib><creatorcontrib>Yang, Xiucheng</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Martin, Jagersand</creatorcontrib><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\textit {G(V,E)} &lt;/tex-math&gt;&lt;/inline-formula&gt; is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</description><subject>Building recognition</subject><subject>Buildings</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>graph optimization</subject><subject>High resolution</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Methods</subject><subject>Optimization</subject><subject>outline extraction</subject><subject>perceptual grouping</subject><subject>Resolution</subject><subject>Roofs</subject><subject>Searching</subject><subject>Segments</subject><subject>Shape</subject><subject>Shortest-path problems</subject><subject>State of the art</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZkyZLejmH-4DBYH4geBGyNJ0ZXTuTRty_t3XDq_NyeN5z4EHoFsgAgGQPi-nqeUAJyAGVXAjIzlAPOJcJ4QLOu8x4wjP5fomuQtgSQpmUooc-RsZErxuLl7EpXWXx00_jtWlcXeG6wPMqd98uj7rEj9GVuas2eOLrHX6z_oBnbvOZrGyoy_hXWO4bZ1p0vtMbG67RRaHLYG9Os49eJ08v41myWE7n49EiMTRLm0RozVmeS5ZTuTaFSQWRRnJGga5FuxbWUJlnUjBtIRMFgGSFZbAuMmIFH6Z9dH-8u_f1V7ShUds6-qp9qSikZAitF9pScKSMr0PwtlB773baHxQQ1TlUnUPVOVQnh23n7thx1tp_XjIqGYj0F8czbYI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Qin, Xuebin</creator><creator>He, Shida</creator><creator>Yang, Xiucheng</creator><creator>Dehghan, Masood</creator><creator>Qin, Qiming</creator><creator>Martin, Jagersand</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2293-6101</orcidid><orcidid>https://orcid.org/0000-0001-5134-9614</orcidid><orcidid>https://orcid.org/0000-0002-9042-7192</orcidid></search><sort><creationdate>20181101</creationdate><title>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</title><author>Qin, Xuebin ; He, Shida ; Yang, Xiucheng ; Dehghan, Masood ; Qin, Qiming ; Martin, Jagersand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7aa54dd84d28bcfc3708c854212b7d847ec28d9874ae197f1184fe41bf90e7563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Building recognition</topic><topic>Buildings</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>graph optimization</topic><topic>High resolution</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Methods</topic><topic>Optimization</topic><topic>outline extraction</topic><topic>perceptual grouping</topic><topic>Resolution</topic><topic>Roofs</topic><topic>Searching</topic><topic>Segments</topic><topic>Shape</topic><topic>Shortest-path problems</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xuebin</creatorcontrib><creatorcontrib>He, Shida</creatorcontrib><creatorcontrib>Yang, Xiucheng</creatorcontrib><creatorcontrib>Dehghan, Masood</creatorcontrib><creatorcontrib>Qin, Qiming</creatorcontrib><creatorcontrib>Martin, Jagersand</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Xuebin</au><au>He, Shida</au><au>Yang, Xiucheng</au><au>Dehghan, Masood</au><au>Qin, Qiming</au><au>Martin, Jagersand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>15</volume><issue>11</issue><spage>1775</spage><epage>1779</epage><pages>1775-1779</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>This letter presents a novel approach for extracting accurate outlines of individual buildings from very high-resolution (0.1-0.4 m) optical images. Building outlines are defined as polygons here. Our approach operates on a set of straight line segments that are detected by a line detector. It groups a subset of detected line segments and connects them to form a closed polygon. Particularly, a new grouping cost is defined first. Second, a weighted undirected graph &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\textit {G(V,E)} &lt;/tex-math&gt;&lt;/inline-formula&gt; is constructed based on the endpoints of those extracted line segments. The building outline extraction is then formulated as a problem of searching for a graph cycle with the minimal grouping cost. To solve the graph cycle searching problem, the bidirectional shortest path method is utilized. Our method is validated on a newly created data set that contains 123 images of various building roofs with different shapes, sizes, and intensities. The experimental results with an average intersection-over-union of 90.56% and an average alignment error of 6.56 pixels demonstrate that our approach is robust to different shapes of building roofs and outperforms the state-of-the-art method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2018.2857719</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2293-6101</orcidid><orcidid>https://orcid.org/0000-0001-5134-9614</orcidid><orcidid>https://orcid.org/0000-0002-9042-7192</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2018-11, Vol.15 (11), p.1775-1779
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_8428417
source IEEE Electronic Library (IEL)
subjects Building recognition
Buildings
Data mining
Feature extraction
graph optimization
High resolution
Image edge detection
Image resolution
Image segmentation
Methods
Optimization
outline extraction
perceptual grouping
Resolution
Roofs
Searching
Segments
Shape
Shortest-path problems
State of the art
title Accurate Outline Extraction of Individual Building From Very High-Resolution Optical Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Outline%20Extraction%20of%20Individual%20Building%20From%20Very%20High-Resolution%20Optical%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Qin,%20Xuebin&rft.date=2018-11-01&rft.volume=15&rft.issue=11&rft.spage=1775&rft.epage=1779&rft.pages=1775-1779&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2018.2857719&rft_dat=%3Cproquest_RIE%3E2130612012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130612012&rft_id=info:pmid/&rft_ieee_id=8428417&rfr_iscdi=true