A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference

A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higherorder curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-01, Vol.66 (1), p.428-437
Hauptverfasser: Zhou, Ze-Kun, Shi, Yue, Wang, Yao, Li, Nie, Xiao, Zhiping, Wang, Yunkun, Liu, Xiaolin, Wang, Zhuo, Zhang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 1
container_start_page 428
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 66
creator Zhou, Ze-Kun
Shi, Yue
Wang, Yao
Li, Nie
Xiao, Zhiping
Wang, Yunkun
Liu, Xiaolin
Wang, Zhuo
Zhang, Bo
description A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higherorder curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity of base-emitter voltage. With proper mathematical operations of high-order temperature currents, most of the nonlinear temperature terms in VBE can be greatly eliminated. The proposed BGR, which is implemented in 0.35-μm CMOS technology, is capable of working down to 2 V supply voltages with 1.14055 V mean output voltage. A minimum temperature coefficient of 1.01 ppm/°C with a temperature range from -40 °C to 125 °C is realized, and a power-supply noise attenuation of 61 dB is achieved without any filter capacitors. The line regulation is better than 2 mV/V from 2 V to 5 V supply voltage while dissipating a maximum supply current of 33 μA. The active area of the presented BGR is 180 μm × 220 μm.
doi_str_mv 10.1109/TCSI.2018.2857821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8425071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425071</ieee_id><sourcerecordid>2154073187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a51b4f48321388c6093e9830ed288c31b4fb0631aaa2bdbe52114337b73d224d3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwAxCXSpw77Lhd0-OogE0CDbHBNUpbd3TampJ0B_49rTZxsi2_rz8eIW4RJoiQPqyz1WIiAdVEqjhREs_ECONYhaBgej7kURoqkupSXHm_BZApEI7EfBZ8sK99Z92OvQ_m9eY7fHdc1L62TZDZfcuNNx2XQfa2XAWPpik3pg2-7K4zG-7NFTtuCr4WF5XZeb45xbH4fH5aZ_PwdfmyyGavYSFT6kITYx5VUX8JklLFFFLiVBFwKfuShmYOU0JjjMzLnGOJGBEleUKllFFJY3F_nNs6-3Ng3-mtPbimX6ll_yQkhCrpVXhUFc5677jSrav3xv1qBD0A0wMwPQDTJ2C95-7oqZn5X68iGUOC9Ac4tmUn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154073187</pqid></control><display><type>article</type><title>A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Ze-Kun ; Shi, Yue ; Wang, Yao ; Li, Nie ; Xiao, Zhiping ; Wang, Yunkun ; Liu, Xiaolin ; Wang, Zhuo ; Zhang, Bo</creator><creatorcontrib>Zhou, Ze-Kun ; Shi, Yue ; Wang, Yao ; Li, Nie ; Xiao, Zhiping ; Wang, Yunkun ; Liu, Xiaolin ; Wang, Zhuo ; Zhang, Bo</creatorcontrib><description>A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higherorder curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity of base-emitter voltage. With proper mathematical operations of high-order temperature currents, most of the nonlinear temperature terms in VBE can be greatly eliminated. The proposed BGR, which is implemented in 0.35-μm CMOS technology, is capable of working down to 2 V supply voltages with 1.14055 V mean output voltage. A minimum temperature coefficient of 1.01 ppm/°C with a temperature range from -40 °C to 125 °C is realized, and a power-supply noise attenuation of 61 dB is achieved without any filter capacitors. The line regulation is better than 2 mV/V from 2 V to 5 V supply voltage while dissipating a maximum supply current of 33 μA. The active area of the presented BGR is 180 μm × 220 μm.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2857821</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Bandgap voltage reference ; CMOS ; CMOS technology ; Curvature ; Electric potential ; Emitters ; Energy gap ; Generators ; high-order curvature compensation ; Noise levels ; Nonlinearity ; Photonic band gap ; resistorless ; Resistors ; Temperature distribution ; temperature nonlinearity ; Threshold voltage</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2019-01, Vol.66 (1), p.428-437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a51b4f48321388c6093e9830ed288c31b4fb0631aaa2bdbe52114337b73d224d3</citedby><cites>FETCH-LOGICAL-c293t-a51b4f48321388c6093e9830ed288c31b4fb0631aaa2bdbe52114337b73d224d3</cites><orcidid>0000-0002-8726-2657 ; 0000-0001-5191-3529 ; 0000-0001-5591-9549 ; 0000-0002-0033-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8425071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Ze-Kun</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Li, Nie</creatorcontrib><creatorcontrib>Xiao, Zhiping</creatorcontrib><creatorcontrib>Wang, Yunkun</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higherorder curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity of base-emitter voltage. With proper mathematical operations of high-order temperature currents, most of the nonlinear temperature terms in VBE can be greatly eliminated. The proposed BGR, which is implemented in 0.35-μm CMOS technology, is capable of working down to 2 V supply voltages with 1.14055 V mean output voltage. A minimum temperature coefficient of 1.01 ppm/°C with a temperature range from -40 °C to 125 °C is realized, and a power-supply noise attenuation of 61 dB is achieved without any filter capacitors. The line regulation is better than 2 mV/V from 2 V to 5 V supply voltage while dissipating a maximum supply current of 33 μA. The active area of the presented BGR is 180 μm × 220 μm.</description><subject>Attenuation</subject><subject>Bandgap voltage reference</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Curvature</subject><subject>Electric potential</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Generators</subject><subject>high-order curvature compensation</subject><subject>Noise levels</subject><subject>Nonlinearity</subject><subject>Photonic band gap</subject><subject>resistorless</subject><subject>Resistors</subject><subject>Temperature distribution</subject><subject>temperature nonlinearity</subject><subject>Threshold voltage</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwAxCXSpw77Lhd0-OogE0CDbHBNUpbd3TampJ0B_49rTZxsi2_rz8eIW4RJoiQPqyz1WIiAdVEqjhREs_ECONYhaBgej7kURoqkupSXHm_BZApEI7EfBZ8sK99Z92OvQ_m9eY7fHdc1L62TZDZfcuNNx2XQfa2XAWPpik3pg2-7K4zG-7NFTtuCr4WF5XZeb45xbH4fH5aZ_PwdfmyyGavYSFT6kITYx5VUX8JklLFFFLiVBFwKfuShmYOU0JjjMzLnGOJGBEleUKllFFJY3F_nNs6-3Ng3-mtPbimX6ll_yQkhCrpVXhUFc5677jSrav3xv1qBD0A0wMwPQDTJ2C95-7oqZn5X68iGUOC9Ac4tmUn</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Zhou, Ze-Kun</creator><creator>Shi, Yue</creator><creator>Wang, Yao</creator><creator>Li, Nie</creator><creator>Xiao, Zhiping</creator><creator>Wang, Yunkun</creator><creator>Liu, Xiaolin</creator><creator>Wang, Zhuo</creator><creator>Zhang, Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8726-2657</orcidid><orcidid>https://orcid.org/0000-0001-5191-3529</orcidid><orcidid>https://orcid.org/0000-0001-5591-9549</orcidid><orcidid>https://orcid.org/0000-0002-0033-0478</orcidid></search><sort><creationdate>201901</creationdate><title>A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference</title><author>Zhou, Ze-Kun ; Shi, Yue ; Wang, Yao ; Li, Nie ; Xiao, Zhiping ; Wang, Yunkun ; Liu, Xiaolin ; Wang, Zhuo ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a51b4f48321388c6093e9830ed288c31b4fb0631aaa2bdbe52114337b73d224d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Attenuation</topic><topic>Bandgap voltage reference</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Curvature</topic><topic>Electric potential</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Generators</topic><topic>high-order curvature compensation</topic><topic>Noise levels</topic><topic>Nonlinearity</topic><topic>Photonic band gap</topic><topic>resistorless</topic><topic>Resistors</topic><topic>Temperature distribution</topic><topic>temperature nonlinearity</topic><topic>Threshold voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ze-Kun</creatorcontrib><creatorcontrib>Shi, Yue</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Li, Nie</creatorcontrib><creatorcontrib>Xiao, Zhiping</creatorcontrib><creatorcontrib>Wang, Yunkun</creatorcontrib><creatorcontrib>Liu, Xiaolin</creatorcontrib><creatorcontrib>Wang, Zhuo</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Ze-Kun</au><au>Shi, Yue</au><au>Wang, Yao</au><au>Li, Nie</au><au>Xiao, Zhiping</au><au>Wang, Yunkun</au><au>Liu, Xiaolin</au><au>Wang, Zhuo</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2019-01</date><risdate>2019</risdate><volume>66</volume><issue>1</issue><spage>428</spage><epage>437</epage><pages>428-437</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>A resistorless high-precision compensated CMOS bandgap voltage reference (BGR), which is compatible with a standard CMOS process, is presented in this paper. A higherorder curvature correction method called base-emitter voltage linearization is adapted to directly compensate the thermal nonlinearity of base-emitter voltage. With proper mathematical operations of high-order temperature currents, most of the nonlinear temperature terms in VBE can be greatly eliminated. The proposed BGR, which is implemented in 0.35-μm CMOS technology, is capable of working down to 2 V supply voltages with 1.14055 V mean output voltage. A minimum temperature coefficient of 1.01 ppm/°C with a temperature range from -40 °C to 125 °C is realized, and a power-supply noise attenuation of 61 dB is achieved without any filter capacitors. The line regulation is better than 2 mV/V from 2 V to 5 V supply voltage while dissipating a maximum supply current of 33 μA. The active area of the presented BGR is 180 μm × 220 μm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2857821</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8726-2657</orcidid><orcidid>https://orcid.org/0000-0001-5191-3529</orcidid><orcidid>https://orcid.org/0000-0001-5591-9549</orcidid><orcidid>https://orcid.org/0000-0002-0033-0478</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2019-01, Vol.66 (1), p.428-437
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_8425071
source IEEE Electronic Library (IEL)
subjects Attenuation
Bandgap voltage reference
CMOS
CMOS technology
Curvature
Electric potential
Emitters
Energy gap
Generators
high-order curvature compensation
Noise levels
Nonlinearity
Photonic band gap
resistorless
Resistors
Temperature distribution
temperature nonlinearity
Threshold voltage
title A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A53%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Resistorless%20High-Precision%20Compensated%20CMOS%20Bandgap%20Voltage%20Reference&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Zhou,%20Ze-Kun&rft.date=2019-01&rft.volume=66&rft.issue=1&rft.spage=428&rft.epage=437&rft.pages=428-437&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2857821&rft_dat=%3Cproquest_RIE%3E2154073187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154073187&rft_id=info:pmid/&rft_ieee_id=8425071&rfr_iscdi=true