Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps

In view of the requirements for high-speed, highly reliable wireless implant communication, we have developed an implant transceiver working at a 10-60-MHz band. The developed transceiver is based on an impulse radio technology with multipulse position modulation to increase the communication speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2018-09, Vol.66 (9), p.4252-4260
Hauptverfasser: Wang, Jianqing, Nomura, Kohei, Narita, Hiroki, Ito, Fuminori, Anzai, Daisuke, Bergsland, Jacob, Balasingham, Ilangko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4260
container_issue 9
container_start_page 4252
container_title IEEE transactions on microwave theory and techniques
container_volume 66
creator Wang, Jianqing
Nomura, Kohei
Narita, Hiroki
Ito, Fuminori
Anzai, Daisuke
Bergsland, Jacob
Balasingham, Ilangko
description In view of the requirements for high-speed, highly reliable wireless implant communication, we have developed an implant transceiver working at a 10-60-MHz band. The developed transceiver is based on an impulse radio technology with multipulse position modulation to increase the communication speed and reliability, and utilizes the automatic equalization technique to suppress waveform distortion and intersymbol interference due to frequency-dependent tissue properties. The transmit antenna has a dimension of 2.6\,\,\text {cm} \times 1.6\,\,\text {cm} \times 1.6 cm and a relative bandwidth of 16% by forming the radiation elements on a flexible magnetic sheet for miniaturization. Through an in vivo experiment on a living swine, we have shown the feasibility of implant communication in a depth up to 26 cm with a minimum data rate of 10 Mbps. These results demonstrate the superiority of this new technology over all others reported so far in the literature.
doi_str_mv 10.1109/TMTT.2018.2854165
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8418319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418319</ieee_id><sourcerecordid>2100048820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-2bfefbd6b37a47863293095fd0ccce1cc9db1bd2dc38cc118c908cecad764f43</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPKfO7Gf2aFu1gkWRxeuSTWZlpU3WpF3Qu__brS2ehmGe9xl4GbtEmCBCcVMuy3ISAcpJJNMEs_SIjTBNc1FkORyzEQwnUSQSTtlZCB_DmqQgR-xnTj2tXLcmu-HKGv5o-VvbO_5CvnF-rawmfter1VZtWme5aziCyEAsF998-hdYd9tVIPGqTOvEVAUyvPTKBk1tT54PFj4n6nbgStnN3rNQfWvfBxdf1l04ZyeNGiQXhzlm5f1dOVuIp-eHx9ntk9Ax5qmI6oaa2mR1nKskl1kcFTEUaWNAa02odWFqrE1kdCy1RpS6AKlJK5NnSZPEY3a913befW4pbKoPt_V2-FhFCACJlBEMFO4p7V0Inpqq8-1a-a8KodqVXe3KrnZlV4eyh8zVPtMS0T8vE5QxFvEvlRx7cQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100048820</pqid></control><display><type>article</type><title>Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jianqing ; Nomura, Kohei ; Narita, Hiroki ; Ito, Fuminori ; Anzai, Daisuke ; Bergsland, Jacob ; Balasingham, Ilangko</creator><creatorcontrib>Wang, Jianqing ; Nomura, Kohei ; Narita, Hiroki ; Ito, Fuminori ; Anzai, Daisuke ; Bergsland, Jacob ; Balasingham, Ilangko</creatorcontrib><description>In view of the requirements for high-speed, highly reliable wireless implant communication, we have developed an implant transceiver working at a 10-60-MHz band. The developed transceiver is based on an impulse radio technology with multipulse position modulation to increase the communication speed and reliability, and utilizes the automatic equalization technique to suppress waveform distortion and intersymbol interference due to frequency-dependent tissue properties. The transmit antenna has a dimension of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.6\,\,\text {cm} \times 1.6\,\,\text {cm} \times 1.6 &lt;/tex-math&gt;&lt;/inline-formula&gt; cm and a relative bandwidth of 16% by forming the radiation elements on a flexible magnetic sheet for miniaturization. Through an in vivo experiment on a living swine, we have shown the feasibility of implant communication in a depth up to 26 cm with a minimum data rate of 10 Mbps. These results demonstrate the superiority of this new technology over all others reported so far in the literature.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2018.2854165</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vivo experiment ; Automatic equalization ; Communication ; Dipole antennas ; Equalization ; Frequency modulation ; implant antenna ; implant transceiver ; Implantation ; Implants ; impulse radio (IR) ; In vivo ; Miniaturization ; New technology ; Performance evaluation ; Surgical implants ; Swine ; Transceivers ; Wireless communication ; Wireless communications ; wireless implant communication</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-09, Vol.66 (9), p.4252-4260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-2bfefbd6b37a47863293095fd0ccce1cc9db1bd2dc38cc118c908cecad764f43</citedby><cites>FETCH-LOGICAL-c3175-2bfefbd6b37a47863293095fd0ccce1cc9db1bd2dc38cc118c908cecad764f43</cites><orcidid>0000-0001-8794-8678 ; 0000-0002-7324-1716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418319$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Wang, Jianqing</creatorcontrib><creatorcontrib>Nomura, Kohei</creatorcontrib><creatorcontrib>Narita, Hiroki</creatorcontrib><creatorcontrib>Ito, Fuminori</creatorcontrib><creatorcontrib>Anzai, Daisuke</creatorcontrib><creatorcontrib>Bergsland, Jacob</creatorcontrib><creatorcontrib>Balasingham, Ilangko</creatorcontrib><title>Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In view of the requirements for high-speed, highly reliable wireless implant communication, we have developed an implant transceiver working at a 10-60-MHz band. The developed transceiver is based on an impulse radio technology with multipulse position modulation to increase the communication speed and reliability, and utilizes the automatic equalization technique to suppress waveform distortion and intersymbol interference due to frequency-dependent tissue properties. The transmit antenna has a dimension of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.6\,\,\text {cm} \times 1.6\,\,\text {cm} \times 1.6 &lt;/tex-math&gt;&lt;/inline-formula&gt; cm and a relative bandwidth of 16% by forming the radiation elements on a flexible magnetic sheet for miniaturization. Through an in vivo experiment on a living swine, we have shown the feasibility of implant communication in a depth up to 26 cm with a minimum data rate of 10 Mbps. These results demonstrate the superiority of this new technology over all others reported so far in the literature.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vivo experiment</subject><subject>Automatic equalization</subject><subject>Communication</subject><subject>Dipole antennas</subject><subject>Equalization</subject><subject>Frequency modulation</subject><subject>implant antenna</subject><subject>implant transceiver</subject><subject>Implantation</subject><subject>Implants</subject><subject>impulse radio (IR)</subject><subject>In vivo</subject><subject>Miniaturization</subject><subject>New technology</subject><subject>Performance evaluation</subject><subject>Surgical implants</subject><subject>Swine</subject><subject>Transceivers</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless implant communication</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPKfO7Gf2aFu1gkWRxeuSTWZlpU3WpF3Qu__brS2ehmGe9xl4GbtEmCBCcVMuy3ISAcpJJNMEs_SIjTBNc1FkORyzEQwnUSQSTtlZCB_DmqQgR-xnTj2tXLcmu-HKGv5o-VvbO_5CvnF-rawmfter1VZtWme5aziCyEAsF998-hdYd9tVIPGqTOvEVAUyvPTKBk1tT54PFj4n6nbgStnN3rNQfWvfBxdf1l04ZyeNGiQXhzlm5f1dOVuIp-eHx9ntk9Ax5qmI6oaa2mR1nKskl1kcFTEUaWNAa02odWFqrE1kdCy1RpS6AKlJK5NnSZPEY3a913befW4pbKoPt_V2-FhFCACJlBEMFO4p7V0Inpqq8-1a-a8KodqVXe3KrnZlV4eyh8zVPtMS0T8vE5QxFvEvlRx7cQ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Wang, Jianqing</creator><creator>Nomura, Kohei</creator><creator>Narita, Hiroki</creator><creator>Ito, Fuminori</creator><creator>Anzai, Daisuke</creator><creator>Bergsland, Jacob</creator><creator>Balasingham, Ilangko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8794-8678</orcidid><orcidid>https://orcid.org/0000-0002-7324-1716</orcidid></search><sort><creationdate>20180901</creationdate><title>Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps</title><author>Wang, Jianqing ; Nomura, Kohei ; Narita, Hiroki ; Ito, Fuminori ; Anzai, Daisuke ; Bergsland, Jacob ; Balasingham, Ilangko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-2bfefbd6b37a47863293095fd0ccce1cc9db1bd2dc38cc118c908cecad764f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;in vivo experiment</topic><topic>Automatic equalization</topic><topic>Communication</topic><topic>Dipole antennas</topic><topic>Equalization</topic><topic>Frequency modulation</topic><topic>implant antenna</topic><topic>implant transceiver</topic><topic>Implantation</topic><topic>Implants</topic><topic>impulse radio (IR)</topic><topic>In vivo</topic><topic>Miniaturization</topic><topic>New technology</topic><topic>Performance evaluation</topic><topic>Surgical implants</topic><topic>Swine</topic><topic>Transceivers</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless implant communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianqing</creatorcontrib><creatorcontrib>Nomura, Kohei</creatorcontrib><creatorcontrib>Narita, Hiroki</creatorcontrib><creatorcontrib>Ito, Fuminori</creatorcontrib><creatorcontrib>Anzai, Daisuke</creatorcontrib><creatorcontrib>Bergsland, Jacob</creatorcontrib><creatorcontrib>Balasingham, Ilangko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianqing</au><au>Nomura, Kohei</au><au>Narita, Hiroki</au><au>Ito, Fuminori</au><au>Anzai, Daisuke</au><au>Bergsland, Jacob</au><au>Balasingham, Ilangko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>66</volume><issue>9</issue><spage>4252</spage><epage>4260</epage><pages>4252-4260</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In view of the requirements for high-speed, highly reliable wireless implant communication, we have developed an implant transceiver working at a 10-60-MHz band. The developed transceiver is based on an impulse radio technology with multipulse position modulation to increase the communication speed and reliability, and utilizes the automatic equalization technique to suppress waveform distortion and intersymbol interference due to frequency-dependent tissue properties. The transmit antenna has a dimension of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;2.6\,\,\text {cm} \times 1.6\,\,\text {cm} \times 1.6 &lt;/tex-math&gt;&lt;/inline-formula&gt; cm and a relative bandwidth of 16% by forming the radiation elements on a flexible magnetic sheet for miniaturization. Through an in vivo experiment on a living swine, we have shown the feasibility of implant communication in a depth up to 26 cm with a minimum data rate of 10 Mbps. These results demonstrate the superiority of this new technology over all others reported so far in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2018.2854165</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8794-8678</orcidid><orcidid>https://orcid.org/0000-0002-7324-1716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2018-09, Vol.66 (9), p.4252-4260
issn 0018-9480
1557-9670
language eng
recordid cdi_ieee_primary_8418319
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo experiment
Automatic equalization
Communication
Dipole antennas
Equalization
Frequency modulation
implant antenna
implant transceiver
Implantation
Implants
impulse radio (IR)
In vivo
Miniaturization
New technology
Performance evaluation
Surgical implants
Swine
Transceivers
Wireless communication
Wireless communications
wireless implant communication
title Development and In Vivo Performance Evaluation of 10-60-MHz Band Impulse-Radio-Based Transceiver for Deep Implantation Having 10 Mbps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20In%20Vivo%20Performance%20Evaluation%20of%2010-60-MHz%20Band%20Impulse-Radio-Based%20Transceiver%20for%20Deep%20Implantation%20Having%2010%20Mbps&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Wang,%20Jianqing&rft.date=2018-09-01&rft.volume=66&rft.issue=9&rft.spage=4252&rft.epage=4260&rft.pages=4252-4260&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2018.2854165&rft_dat=%3Cproquest_ieee_%3E2100048820%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100048820&rft_id=info:pmid/&rft_ieee_id=8418319&rfr_iscdi=true