Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters
An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2019-05, Vol.34 (5), p.4794-4806 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4806 |
---|---|
container_issue | 5 |
container_start_page | 4794 |
container_title | IEEE transactions on power electronics |
container_volume | 34 |
creator | Khodamoradi, Aram Liu, Guangyuan Mattavelli, Paolo Caldognetto, Tommaso Magnone, Paolo |
description | An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids. |
doi_str_mv | 10.1109/TPEL.2018.2858572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8417434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8417434</ieee_id><sourcerecordid>2203404263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-AOOmievB29dMZ0lGfCQQSIR1U6YtloxTbAcN_94hEFd3852Tcz-E7gmMCIHyabmYTEcUiBxRKaQo6AUakJKTDAgUl2gAUopMliW7RjcpbQEIF0AGaDVudXNIPuHgsG7xvG18a_FHp9e-8d0Bz0LruxB9u8Hj3S4GXX9iFyJ-rvDM1zFsojd4EX5txFVof2zsbEy36MrpJtm78x2i1ctkWb1l0_nrezWeZjWTvMssN0VpaeksK9YGTC05XUvK81z067QrqZDUQmEk0UaAKBwHw3JHdV1b4gwbosdTbz_se29Tp7ZhH_uPkqIUGAdOc9ZT5ET1c1OK1qld9F86HhQBdbSnjvbU0Z462-szD6eMt9b-85KTgjPO_gBlBGs3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203404263</pqid></control><display><type>article</type><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><source>IEEE Electronic Library (IEL)</source><creator>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</creator><creatorcontrib>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</creatorcontrib><description>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2018.2858572</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Control stability ; Crossovers ; Data buses ; DC microgrids ; digitally controlled power converters ; Distributed generation ; Electric power grids ; Frequency control ; frequency estimation ; Loops ; Measurement techniques ; Microgrids ; Monitoring ; Perturbation methods ; Power converters ; Power system stability ; Stability analysis ; Stability criteria ; stability monitoring</subject><ispartof>IEEE transactions on power electronics, 2019-05, Vol.34 (5), p.4794-4806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</citedby><cites>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</cites><orcidid>0000-0002-3285-3986 ; 0000-0002-0994-5305 ; 0000-0003-4117-5408 ; 0000-0002-4140-7638 ; 0000-0002-7860-2920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8417434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8417434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khodamoradi, Aram</creatorcontrib><creatorcontrib>Liu, Guangyuan</creatorcontrib><creatorcontrib>Mattavelli, Paolo</creatorcontrib><creatorcontrib>Caldognetto, Tommaso</creatorcontrib><creatorcontrib>Magnone, Paolo</creatorcontrib><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</description><subject>Computer simulation</subject><subject>Control stability</subject><subject>Crossovers</subject><subject>Data buses</subject><subject>DC microgrids</subject><subject>digitally controlled power converters</subject><subject>Distributed generation</subject><subject>Electric power grids</subject><subject>Frequency control</subject><subject>frequency estimation</subject><subject>Loops</subject><subject>Measurement techniques</subject><subject>Microgrids</subject><subject>Monitoring</subject><subject>Perturbation methods</subject><subject>Power converters</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>stability monitoring</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-AOOmievB29dMZ0lGfCQQSIR1U6YtloxTbAcN_94hEFd3852Tcz-E7gmMCIHyabmYTEcUiBxRKaQo6AUakJKTDAgUl2gAUopMliW7RjcpbQEIF0AGaDVudXNIPuHgsG7xvG18a_FHp9e-8d0Bz0LruxB9u8Hj3S4GXX9iFyJ-rvDM1zFsojd4EX5txFVof2zsbEy36MrpJtm78x2i1ctkWb1l0_nrezWeZjWTvMssN0VpaeksK9YGTC05XUvK81z067QrqZDUQmEk0UaAKBwHw3JHdV1b4gwbosdTbz_se29Tp7ZhH_uPkqIUGAdOc9ZT5ET1c1OK1qld9F86HhQBdbSnjvbU0Z462-szD6eMt9b-85KTgjPO_gBlBGs3</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Khodamoradi, Aram</creator><creator>Liu, Guangyuan</creator><creator>Mattavelli, Paolo</creator><creator>Caldognetto, Tommaso</creator><creator>Magnone, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3285-3986</orcidid><orcidid>https://orcid.org/0000-0002-0994-5305</orcidid><orcidid>https://orcid.org/0000-0003-4117-5408</orcidid><orcidid>https://orcid.org/0000-0002-4140-7638</orcidid><orcidid>https://orcid.org/0000-0002-7860-2920</orcidid></search><sort><creationdate>20190501</creationdate><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><author>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Control stability</topic><topic>Crossovers</topic><topic>Data buses</topic><topic>DC microgrids</topic><topic>digitally controlled power converters</topic><topic>Distributed generation</topic><topic>Electric power grids</topic><topic>Frequency control</topic><topic>frequency estimation</topic><topic>Loops</topic><topic>Measurement techniques</topic><topic>Microgrids</topic><topic>Monitoring</topic><topic>Perturbation methods</topic><topic>Power converters</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>stability monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodamoradi, Aram</creatorcontrib><creatorcontrib>Liu, Guangyuan</creatorcontrib><creatorcontrib>Mattavelli, Paolo</creatorcontrib><creatorcontrib>Caldognetto, Tommaso</creatorcontrib><creatorcontrib>Magnone, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khodamoradi, Aram</au><au>Liu, Guangyuan</au><au>Mattavelli, Paolo</au><au>Caldognetto, Tommaso</au><au>Magnone, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>34</volume><issue>5</issue><spage>4794</spage><epage>4806</epage><pages>4794-4806</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2018.2858572</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3285-3986</orcidid><orcidid>https://orcid.org/0000-0002-0994-5305</orcidid><orcidid>https://orcid.org/0000-0003-4117-5408</orcidid><orcidid>https://orcid.org/0000-0002-4140-7638</orcidid><orcidid>https://orcid.org/0000-0002-7860-2920</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2019-05, Vol.34 (5), p.4794-4806 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_8417434 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Control stability Crossovers Data buses DC microgrids digitally controlled power converters Distributed generation Electric power grids Frequency control frequency estimation Loops Measurement techniques Microgrids Monitoring Perturbation methods Power converters Power system stability Stability analysis Stability criteria stability monitoring |
title | Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20an%20Online%20Stability%20Monitoring%20Approach%20for%20DC%20Microgrid%20Power%20Converters&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Khodamoradi,%20Aram&rft.date=2019-05-01&rft.volume=34&rft.issue=5&rft.spage=4794&rft.epage=4806&rft.pages=4794-4806&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2018.2858572&rft_dat=%3Cproquest_RIE%3E2203404263%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203404263&rft_id=info:pmid/&rft_ieee_id=8417434&rfr_iscdi=true |