Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters

An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2019-05, Vol.34 (5), p.4794-4806
Hauptverfasser: Khodamoradi, Aram, Liu, Guangyuan, Mattavelli, Paolo, Caldognetto, Tommaso, Magnone, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4806
container_issue 5
container_start_page 4794
container_title IEEE transactions on power electronics
container_volume 34
creator Khodamoradi, Aram
Liu, Guangyuan
Mattavelli, Paolo
Caldognetto, Tommaso
Magnone, Paolo
description An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.
doi_str_mv 10.1109/TPEL.2018.2858572
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8417434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8417434</ieee_id><sourcerecordid>2203404263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-AOOmievB29dMZ0lGfCQQSIR1U6YtloxTbAcN_94hEFd3852Tcz-E7gmMCIHyabmYTEcUiBxRKaQo6AUakJKTDAgUl2gAUopMliW7RjcpbQEIF0AGaDVudXNIPuHgsG7xvG18a_FHp9e-8d0Bz0LruxB9u8Hj3S4GXX9iFyJ-rvDM1zFsojd4EX5txFVof2zsbEy36MrpJtm78x2i1ctkWb1l0_nrezWeZjWTvMssN0VpaeksK9YGTC05XUvK81z067QrqZDUQmEk0UaAKBwHw3JHdV1b4gwbosdTbz_se29Tp7ZhH_uPkqIUGAdOc9ZT5ET1c1OK1qld9F86HhQBdbSnjvbU0Z462-szD6eMt9b-85KTgjPO_gBlBGs3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203404263</pqid></control><display><type>article</type><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><source>IEEE Electronic Library (IEL)</source><creator>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</creator><creatorcontrib>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</creatorcontrib><description>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2018.2858572</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Control stability ; Crossovers ; Data buses ; DC microgrids ; digitally controlled power converters ; Distributed generation ; Electric power grids ; Frequency control ; frequency estimation ; Loops ; Measurement techniques ; Microgrids ; Monitoring ; Perturbation methods ; Power converters ; Power system stability ; Stability analysis ; Stability criteria ; stability monitoring</subject><ispartof>IEEE transactions on power electronics, 2019-05, Vol.34 (5), p.4794-4806</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</citedby><cites>FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</cites><orcidid>0000-0002-3285-3986 ; 0000-0002-0994-5305 ; 0000-0003-4117-5408 ; 0000-0002-4140-7638 ; 0000-0002-7860-2920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8417434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8417434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khodamoradi, Aram</creatorcontrib><creatorcontrib>Liu, Guangyuan</creatorcontrib><creatorcontrib>Mattavelli, Paolo</creatorcontrib><creatorcontrib>Caldognetto, Tommaso</creatorcontrib><creatorcontrib>Magnone, Paolo</creatorcontrib><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</description><subject>Computer simulation</subject><subject>Control stability</subject><subject>Crossovers</subject><subject>Data buses</subject><subject>DC microgrids</subject><subject>digitally controlled power converters</subject><subject>Distributed generation</subject><subject>Electric power grids</subject><subject>Frequency control</subject><subject>frequency estimation</subject><subject>Loops</subject><subject>Measurement techniques</subject><subject>Microgrids</subject><subject>Monitoring</subject><subject>Perturbation methods</subject><subject>Power converters</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>stability monitoring</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-AOOmievB29dMZ0lGfCQQSIR1U6YtloxTbAcN_94hEFd3852Tcz-E7gmMCIHyabmYTEcUiBxRKaQo6AUakJKTDAgUl2gAUopMliW7RjcpbQEIF0AGaDVudXNIPuHgsG7xvG18a_FHp9e-8d0Bz0LruxB9u8Hj3S4GXX9iFyJ-rvDM1zFsojd4EX5txFVof2zsbEy36MrpJtm78x2i1ctkWb1l0_nrezWeZjWTvMssN0VpaeksK9YGTC05XUvK81z067QrqZDUQmEk0UaAKBwHw3JHdV1b4gwbosdTbz_se29Tp7ZhH_uPkqIUGAdOc9ZT5ET1c1OK1qld9F86HhQBdbSnjvbU0Z462-szD6eMt9b-85KTgjPO_gBlBGs3</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Khodamoradi, Aram</creator><creator>Liu, Guangyuan</creator><creator>Mattavelli, Paolo</creator><creator>Caldognetto, Tommaso</creator><creator>Magnone, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3285-3986</orcidid><orcidid>https://orcid.org/0000-0002-0994-5305</orcidid><orcidid>https://orcid.org/0000-0003-4117-5408</orcidid><orcidid>https://orcid.org/0000-0002-4140-7638</orcidid><orcidid>https://orcid.org/0000-0002-7860-2920</orcidid></search><sort><creationdate>20190501</creationdate><title>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</title><author>Khodamoradi, Aram ; Liu, Guangyuan ; Mattavelli, Paolo ; Caldognetto, Tommaso ; Magnone, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e4d79e29fe37bd0dc842b824665450af92582e07d81ad5057f40d36f2acce1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Control stability</topic><topic>Crossovers</topic><topic>Data buses</topic><topic>DC microgrids</topic><topic>digitally controlled power converters</topic><topic>Distributed generation</topic><topic>Electric power grids</topic><topic>Frequency control</topic><topic>frequency estimation</topic><topic>Loops</topic><topic>Measurement techniques</topic><topic>Microgrids</topic><topic>Monitoring</topic><topic>Perturbation methods</topic><topic>Power converters</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>stability monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khodamoradi, Aram</creatorcontrib><creatorcontrib>Liu, Guangyuan</creatorcontrib><creatorcontrib>Mattavelli, Paolo</creatorcontrib><creatorcontrib>Caldognetto, Tommaso</creatorcontrib><creatorcontrib>Magnone, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khodamoradi, Aram</au><au>Liu, Guangyuan</au><au>Mattavelli, Paolo</au><au>Caldognetto, Tommaso</au><au>Magnone, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>34</volume><issue>5</issue><spage>4794</spage><epage>4806</epage><pages>4794-4806</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>An online approach to evaluate and monitor the stability margins of dc microgrid power converters is presented in this paper. The discussed online stability monitoring technique is based on the Middlebrook's loop-gain measurement technique, adapted to the digitally controlled power converters. In this approach, a perturbation is injected into a specific digital control loop of the converter and after measuring the loop gain, its crossover frequency and phase margin are continuously evaluated and monitored. The complete analytical derivation of the model, as well as detailed design aspects, are reported. In addition, the presence of multiple power converters connected to the same dc bus, all having the stability monitoring unit, is also investigated. An experimental microgrid prototype is implemented and considered to validate the theoretical analysis and simulation results, and to evaluate the effectiveness of the digital implementation of the technique for different control loops. The obtained results confirm the expected performance of the stability monitoring tool in steady-state and transient operating conditions. The proposed method can be extended to generic control loops in power converters operating in dc microgrids.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2018.2858572</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3285-3986</orcidid><orcidid>https://orcid.org/0000-0002-0994-5305</orcidid><orcidid>https://orcid.org/0000-0003-4117-5408</orcidid><orcidid>https://orcid.org/0000-0002-4140-7638</orcidid><orcidid>https://orcid.org/0000-0002-7860-2920</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2019-05, Vol.34 (5), p.4794-4806
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_8417434
source IEEE Electronic Library (IEL)
subjects Computer simulation
Control stability
Crossovers
Data buses
DC microgrids
digitally controlled power converters
Distributed generation
Electric power grids
Frequency control
frequency estimation
Loops
Measurement techniques
Microgrids
Monitoring
Perturbation methods
Power converters
Power system stability
Stability analysis
Stability criteria
stability monitoring
title Analysis of an Online Stability Monitoring Approach for DC Microgrid Power Converters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20an%20Online%20Stability%20Monitoring%20Approach%20for%20DC%20Microgrid%20Power%20Converters&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Khodamoradi,%20Aram&rft.date=2019-05-01&rft.volume=34&rft.issue=5&rft.spage=4794&rft.epage=4806&rft.pages=4794-4806&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2018.2858572&rft_dat=%3Cproquest_RIE%3E2203404263%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2203404263&rft_id=info:pmid/&rft_ieee_id=8417434&rfr_iscdi=true