Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation
Deployment of deep neural networks on hardware platforms is often constrained by limited on-chip memory and computational power. The proposed weight quantization offers the possibility of optimizing weight memory alongside transforming the weights to hardware friendly data types. We apply dynamic fi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2018-11, Vol.37 (11), p.2929-2939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2939 |
---|---|
container_issue | 11 |
container_start_page | 2929 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 37 |
creator | Wess, Matthias Dinakarrao, Sai Manoj Pudukotai Jantsch, Axel |
description | Deployment of deep neural networks on hardware platforms is often constrained by limited on-chip memory and computational power. The proposed weight quantization offers the possibility of optimizing weight memory alongside transforming the weights to hardware friendly data types. We apply dynamic fixed point (DFP) and power-of-two (Po2) quantization in conjunction with layer-wise precision scaling to minimize the weight memory. To alleviate accuracy degradation due to precision scaling, we employ quantization-aware fine-tuning. For fine-tuning, quantization-regularization (QR) and weighted QR are introduced to force the trained quantization by adding the distance of the weights to the desired quantization levels as a regularization term to the loss-function. While DFP quantization performs better when allowing different bit-widths for each layer, Po2 quantization in combination with retraining allows higher compression rates for equal bit-width quantization. The techniques are verified on an all-convolutional network. With accuracy degradation of 0.10% points, for DFP with layer-wise precision scaling we achieve compression ratios of 7.34 for CIFAR-10, 4.7 for CIFAR-100, and 9.33 for SVHN dataset. |
doi_str_mv | 10.1109/TCAD.2018.2857080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8412511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412511</ieee_id><sourcerecordid>2121956112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6b7b7ba98fae53f85d57c6028d3f79e23d9eebf42d2cc65f33a67f87db7060363</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5omeRybusE2USZ7DFmbzIy1nWmLzE9vZ6fcw3Hc738HP4RugQwAiHpYjobjASUgB1RyQSQ5Qz1QTEQxcDhHPUKFjAgR5BJdVdWWEIg5VT2UrazffNQ2w6-NKWr_bWpfFtGb3TQ7E04j9gUeLxYVdmXAXQDPbV6GA577wud_2LL8MiHDkxWe5vudzW1R_y6u0YUzu8renHofvT89LkeTaPbyPB0NZ1FKFaujZC3aMko6YzlzkmdcpAmhMmNOKEtZpqxdu5hmNE0T7hgziXBSZGtBEsIS1kf33d19KD8bW9V6WzahaF9qChQUTwBoS0FHpaGsqmCd3gefm3DQQPRRpj7K1EeZ-iSzzdx1GW-t_edlDJQDsB_YQ3F4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121956112</pqid></control><display><type>article</type><title>Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Wess, Matthias ; Dinakarrao, Sai Manoj Pudukotai ; Jantsch, Axel</creator><creatorcontrib>Wess, Matthias ; Dinakarrao, Sai Manoj Pudukotai ; Jantsch, Axel</creatorcontrib><description>Deployment of deep neural networks on hardware platforms is often constrained by limited on-chip memory and computational power. The proposed weight quantization offers the possibility of optimizing weight memory alongside transforming the weights to hardware friendly data types. We apply dynamic fixed point (DFP) and power-of-two (Po2) quantization in conjunction with layer-wise precision scaling to minimize the weight memory. To alleviate accuracy degradation due to precision scaling, we employ quantization-aware fine-tuning. For fine-tuning, quantization-regularization (QR) and weighted QR are introduced to force the trained quantization by adding the distance of the weights to the desired quantization levels as a regularization term to the loss-function. While DFP quantization performs better when allowing different bit-widths for each layer, Po2 quantization in combination with retraining allows higher compression rates for equal bit-width quantization. The techniques are verified on an all-convolutional network. With accuracy degradation of 0.10% points, for DFP with layer-wise precision scaling we achieve compression ratios of 7.34 for CIFAR-10, 4.7 for CIFAR-100, and 9.33 for SVHN dataset.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2857080</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Compression ratio ; Computer memory ; Convolutional neural networks ; Degradation ; Embedded systems ; Hardware ; Measurement ; Memory management ; memory minimization ; Neural networks ; Optimization ; quantization ; Quantization (signal) ; Regularization ; Retraining ; Scaling ; Task analysis ; Training ; Tuning ; Weight</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2929-2939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6b7b7ba98fae53f85d57c6028d3f79e23d9eebf42d2cc65f33a67f87db7060363</citedby><cites>FETCH-LOGICAL-c293t-6b7b7ba98fae53f85d57c6028d3f79e23d9eebf42d2cc65f33a67f87db7060363</cites><orcidid>0000-0003-2251-0004 ; 0000-0002-4417-2387 ; 0000-0002-1877-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8412511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wess, Matthias</creatorcontrib><creatorcontrib>Dinakarrao, Sai Manoj Pudukotai</creatorcontrib><creatorcontrib>Jantsch, Axel</creatorcontrib><title>Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Deployment of deep neural networks on hardware platforms is often constrained by limited on-chip memory and computational power. The proposed weight quantization offers the possibility of optimizing weight memory alongside transforming the weights to hardware friendly data types. We apply dynamic fixed point (DFP) and power-of-two (Po2) quantization in conjunction with layer-wise precision scaling to minimize the weight memory. To alleviate accuracy degradation due to precision scaling, we employ quantization-aware fine-tuning. For fine-tuning, quantization-regularization (QR) and weighted QR are introduced to force the trained quantization by adding the distance of the weights to the desired quantization levels as a regularization term to the loss-function. While DFP quantization performs better when allowing different bit-widths for each layer, Po2 quantization in combination with retraining allows higher compression rates for equal bit-width quantization. The techniques are verified on an all-convolutional network. With accuracy degradation of 0.10% points, for DFP with layer-wise precision scaling we achieve compression ratios of 7.34 for CIFAR-10, 4.7 for CIFAR-100, and 9.33 for SVHN dataset.</description><subject>Artificial neural networks</subject><subject>Compression ratio</subject><subject>Computer memory</subject><subject>Convolutional neural networks</subject><subject>Degradation</subject><subject>Embedded systems</subject><subject>Hardware</subject><subject>Measurement</subject><subject>Memory management</subject><subject>memory minimization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>quantization</subject><subject>Quantization (signal)</subject><subject>Regularization</subject><subject>Retraining</subject><subject>Scaling</subject><subject>Task analysis</subject><subject>Training</subject><subject>Tuning</subject><subject>Weight</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHwJ-NyZS5omeRybusE2USZ7DFmbzIy1nWmLzE9vZ6fcw3Hc738HP4RugQwAiHpYjobjASUgB1RyQSQ5Qz1QTEQxcDhHPUKFjAgR5BJdVdWWEIg5VT2UrazffNQ2w6-NKWr_bWpfFtGb3TQ7E04j9gUeLxYVdmXAXQDPbV6GA577wud_2LL8MiHDkxWe5vudzW1R_y6u0YUzu8renHofvT89LkeTaPbyPB0NZ1FKFaujZC3aMko6YzlzkmdcpAmhMmNOKEtZpqxdu5hmNE0T7hgziXBSZGtBEsIS1kf33d19KD8bW9V6WzahaF9qChQUTwBoS0FHpaGsqmCd3gefm3DQQPRRpj7K1EeZ-iSzzdx1GW-t_edlDJQDsB_YQ3F4</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Wess, Matthias</creator><creator>Dinakarrao, Sai Manoj Pudukotai</creator><creator>Jantsch, Axel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2251-0004</orcidid><orcidid>https://orcid.org/0000-0002-4417-2387</orcidid><orcidid>https://orcid.org/0000-0002-1877-4114</orcidid></search><sort><creationdate>20181101</creationdate><title>Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation</title><author>Wess, Matthias ; Dinakarrao, Sai Manoj Pudukotai ; Jantsch, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6b7b7ba98fae53f85d57c6028d3f79e23d9eebf42d2cc65f33a67f87db7060363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Compression ratio</topic><topic>Computer memory</topic><topic>Convolutional neural networks</topic><topic>Degradation</topic><topic>Embedded systems</topic><topic>Hardware</topic><topic>Measurement</topic><topic>Memory management</topic><topic>memory minimization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>quantization</topic><topic>Quantization (signal)</topic><topic>Regularization</topic><topic>Retraining</topic><topic>Scaling</topic><topic>Task analysis</topic><topic>Training</topic><topic>Tuning</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wess, Matthias</creatorcontrib><creatorcontrib>Dinakarrao, Sai Manoj Pudukotai</creatorcontrib><creatorcontrib>Jantsch, Axel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wess, Matthias</au><au>Dinakarrao, Sai Manoj Pudukotai</au><au>Jantsch, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>37</volume><issue>11</issue><spage>2929</spage><epage>2939</epage><pages>2929-2939</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Deployment of deep neural networks on hardware platforms is often constrained by limited on-chip memory and computational power. The proposed weight quantization offers the possibility of optimizing weight memory alongside transforming the weights to hardware friendly data types. We apply dynamic fixed point (DFP) and power-of-two (Po2) quantization in conjunction with layer-wise precision scaling to minimize the weight memory. To alleviate accuracy degradation due to precision scaling, we employ quantization-aware fine-tuning. For fine-tuning, quantization-regularization (QR) and weighted QR are introduced to force the trained quantization by adding the distance of the weights to the desired quantization levels as a regularization term to the loss-function. While DFP quantization performs better when allowing different bit-widths for each layer, Po2 quantization in combination with retraining allows higher compression rates for equal bit-width quantization. The techniques are verified on an all-convolutional network. With accuracy degradation of 0.10% points, for DFP with layer-wise precision scaling we achieve compression ratios of 7.34 for CIFAR-10, 4.7 for CIFAR-100, and 9.33 for SVHN dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2857080</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2251-0004</orcidid><orcidid>https://orcid.org/0000-0002-4417-2387</orcidid><orcidid>https://orcid.org/0000-0002-1877-4114</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2018-11, Vol.37 (11), p.2929-2939 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_8412511 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Compression ratio Computer memory Convolutional neural networks Degradation Embedded systems Hardware Measurement Memory management memory minimization Neural networks Optimization quantization Quantization (signal) Regularization Retraining Scaling Task analysis Training Tuning Weight |
title | Weighted Quantization-Regularization in DNNs for Weight Memory Minimization Toward HW Implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Quantization-Regularization%20in%20DNNs%20for%20Weight%20Memory%20Minimization%20Toward%20HW%20Implementation&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Wess,%20Matthias&rft.date=2018-11-01&rft.volume=37&rft.issue=11&rft.spage=2929&rft.epage=2939&rft.pages=2929-2939&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2857080&rft_dat=%3Cproquest_RIE%3E2121956112%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121956112&rft_id=info:pmid/&rft_ieee_id=8412511&rfr_iscdi=true |