SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks

This paper forms a framework for allocating a central electric energy storage (EES) in discrete communities, forming as segmentations along the rural feeders, where the installation of cross connects are not economic or even feasible. In this framework, EESs that centrally can be installed in each c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2019-03, Vol.13 (1), p.842-853
Hauptverfasser: Narimani, Afsaneh, Nourbakhsh, Ghavameddin, Arefi, Ali, Ledwich, Gerard F., Walker, Geoffrey R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue 1
container_start_page 842
container_title IEEE systems journal
container_volume 13
creator Narimani, Afsaneh
Nourbakhsh, Ghavameddin
Arefi, Ali
Ledwich, Gerard F.
Walker, Geoffrey R.
description This paper forms a framework for allocating a central electric energy storage (EES) in discrete communities, forming as segmentations along the rural feeders, where the installation of cross connects are not economic or even feasible. In this framework, EESs that centrally can be installed in each community are owned and operated by an aggregator/retailer, trading bidirectional energy transactions with both the grid and the customers. The objective is to find optimum investment in storage capacity in rural feeders for minimum annual energy purchase cost using energy arbitrage opportunities, while maintaining an allowable level of system average interruption duration index (SAIDI). As a part of EES sizing and siting optimization in this approach, annual hourly network data are utilized for charge/discharge scheduling and constraint, and for system reliability assessment-using the k-means clustering technique. This method is applied to a rural network in Queensland, Australia, and the results are examined to show the effectiveness of this method.
doi_str_mv 10.1109/JSYST.2018.2852630
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8411550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8411550</ieee_id><sourcerecordid>2185733263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6d194d711c232f1a9b52e586180407a65f9638bdc6933c2504af69db17315fec3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwA7CxxDrF40diL6uUR1EFiLQLVpaTOJVLaxcnEYKvJ32I1YxG585oThRdAx4BYHn3nH_k8xHBIEZEcJJQfBINQNI0loSy031PYgGCnUcXTbPCmAueykFk8vF0MkWZd00btHWmQveld35jS_S21s5Zt0TaVWjR2rX91a31DvkaZcb1_BrlrQ96aZB16L3bDSa2X2SLbg--mPbbh8_mMjqr9boxV8c6jBYP9_PsKZ69Pk6z8SwuKWNtnFQgWZUClISSGrQsODFcJCAww6lOeC0TKoqqTCSlJeGY6TqRVQEpBV6bkg6j28PebfBfnWlatfJdcP1JRaB_mNJeTU-RA1UG3zTB1Gob7EaHHwVY7XSqvU6106mOOvvQzSFkjTH_AcEAOMf0D_3ZcRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185733263</pqid></control><display><type>article</type><title>SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Narimani, Afsaneh ; Nourbakhsh, Ghavameddin ; Arefi, Ali ; Ledwich, Gerard F. ; Walker, Geoffrey R.</creator><creatorcontrib>Narimani, Afsaneh ; Nourbakhsh, Ghavameddin ; Arefi, Ali ; Ledwich, Gerard F. ; Walker, Geoffrey R.</creatorcontrib><description>This paper forms a framework for allocating a central electric energy storage (EES) in discrete communities, forming as segmentations along the rural feeders, where the installation of cross connects are not economic or even feasible. In this framework, EESs that centrally can be installed in each community are owned and operated by an aggregator/retailer, trading bidirectional energy transactions with both the grid and the customers. The objective is to find optimum investment in storage capacity in rural feeders for minimum annual energy purchase cost using energy arbitrage opportunities, while maintaining an allowable level of system average interruption duration index (SAIDI). As a part of EES sizing and siting optimization in this approach, annual hourly network data are utilized for charge/discharge scheduling and constraint, and for system reliability assessment-using the k-means clustering technique. This method is applied to a rural network in Queensland, Australia, and the results are examined to show the effectiveness of this method.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2018.2852630</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k-means</tex-math> </inline-formula> </named-content> clustering ; Batteries ; Cluster analysis ; Clustering ; Cost benefits analysis ; Distribution management ; Economics ; Electric energy storage ; electric energy storage (EES) ; Energy storage ; Feeders ; genetic algorithm (GA) ; Investment ; Planning ; Power system reliability ; Reliability ; Reliability analysis ; Rural communities ; Storage capacity ; System reliability ; Vector quantization]]></subject><ispartof>IEEE systems journal, 2019-03, Vol.13 (1), p.842-853</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6d194d711c232f1a9b52e586180407a65f9638bdc6933c2504af69db17315fec3</citedby><cites>FETCH-LOGICAL-c344t-6d194d711c232f1a9b52e586180407a65f9638bdc6933c2504af69db17315fec3</cites><orcidid>0000-0002-8989-2812 ; 0000-0001-7474-0309 ; 0000-0001-8137-9507 ; 0000-0001-9679-7306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8411550$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8411550$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Narimani, Afsaneh</creatorcontrib><creatorcontrib>Nourbakhsh, Ghavameddin</creatorcontrib><creatorcontrib>Arefi, Ali</creatorcontrib><creatorcontrib>Ledwich, Gerard F.</creatorcontrib><creatorcontrib>Walker, Geoffrey R.</creatorcontrib><title>SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>This paper forms a framework for allocating a central electric energy storage (EES) in discrete communities, forming as segmentations along the rural feeders, where the installation of cross connects are not economic or even feasible. In this framework, EESs that centrally can be installed in each community are owned and operated by an aggregator/retailer, trading bidirectional energy transactions with both the grid and the customers. The objective is to find optimum investment in storage capacity in rural feeders for minimum annual energy purchase cost using energy arbitrage opportunities, while maintaining an allowable level of system average interruption duration index (SAIDI). As a part of EES sizing and siting optimization in this approach, annual hourly network data are utilized for charge/discharge scheduling and constraint, and for system reliability assessment-using the k-means clustering technique. This method is applied to a rural network in Queensland, Australia, and the results are examined to show the effectiveness of this method.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k-means</tex-math> </inline-formula> </named-content> clustering]]></subject><subject>Batteries</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cost benefits analysis</subject><subject>Distribution management</subject><subject>Economics</subject><subject>Electric energy storage</subject><subject>electric energy storage (EES)</subject><subject>Energy storage</subject><subject>Feeders</subject><subject>genetic algorithm (GA)</subject><subject>Investment</subject><subject>Planning</subject><subject>Power system reliability</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Rural communities</subject><subject>Storage capacity</subject><subject>System reliability</subject><subject>Vector quantization</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwA7CxxDrF40diL6uUR1EFiLQLVpaTOJVLaxcnEYKvJ32I1YxG585oThRdAx4BYHn3nH_k8xHBIEZEcJJQfBINQNI0loSy031PYgGCnUcXTbPCmAueykFk8vF0MkWZd00btHWmQveld35jS_S21s5Zt0TaVWjR2rX91a31DvkaZcb1_BrlrQ96aZB16L3bDSa2X2SLbg--mPbbh8_mMjqr9boxV8c6jBYP9_PsKZ69Pk6z8SwuKWNtnFQgWZUClISSGrQsODFcJCAww6lOeC0TKoqqTCSlJeGY6TqRVQEpBV6bkg6j28PebfBfnWlatfJdcP1JRaB_mNJeTU-RA1UG3zTB1Gob7EaHHwVY7XSqvU6106mOOvvQzSFkjTH_AcEAOMf0D_3ZcRE</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Narimani, Afsaneh</creator><creator>Nourbakhsh, Ghavameddin</creator><creator>Arefi, Ali</creator><creator>Ledwich, Gerard F.</creator><creator>Walker, Geoffrey R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8989-2812</orcidid><orcidid>https://orcid.org/0000-0001-7474-0309</orcidid><orcidid>https://orcid.org/0000-0001-8137-9507</orcidid><orcidid>https://orcid.org/0000-0001-9679-7306</orcidid></search><sort><creationdate>201903</creationdate><title>SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks</title><author>Narimani, Afsaneh ; Nourbakhsh, Ghavameddin ; Arefi, Ali ; Ledwich, Gerard F. ; Walker, Geoffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6d194d711c232f1a9b52e586180407a65f9638bdc6933c2504af69db17315fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k-means</tex-math> </inline-formula> </named-content> clustering]]></topic><topic>Batteries</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cost benefits analysis</topic><topic>Distribution management</topic><topic>Economics</topic><topic>Electric energy storage</topic><topic>electric energy storage (EES)</topic><topic>Energy storage</topic><topic>Feeders</topic><topic>genetic algorithm (GA)</topic><topic>Investment</topic><topic>Planning</topic><topic>Power system reliability</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Rural communities</topic><topic>Storage capacity</topic><topic>System reliability</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narimani, Afsaneh</creatorcontrib><creatorcontrib>Nourbakhsh, Ghavameddin</creatorcontrib><creatorcontrib>Arefi, Ali</creatorcontrib><creatorcontrib>Ledwich, Gerard F.</creatorcontrib><creatorcontrib>Walker, Geoffrey R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narimani, Afsaneh</au><au>Nourbakhsh, Ghavameddin</au><au>Arefi, Ali</au><au>Ledwich, Gerard F.</au><au>Walker, Geoffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2019-03</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><spage>842</spage><epage>853</epage><pages>842-853</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>This paper forms a framework for allocating a central electric energy storage (EES) in discrete communities, forming as segmentations along the rural feeders, where the installation of cross connects are not economic or even feasible. In this framework, EESs that centrally can be installed in each community are owned and operated by an aggregator/retailer, trading bidirectional energy transactions with both the grid and the customers. The objective is to find optimum investment in storage capacity in rural feeders for minimum annual energy purchase cost using energy arbitrage opportunities, while maintaining an allowable level of system average interruption duration index (SAIDI). As a part of EES sizing and siting optimization in this approach, annual hourly network data are utilized for charge/discharge scheduling and constraint, and for system reliability assessment-using the k-means clustering technique. This method is applied to a rural network in Queensland, Australia, and the results are examined to show the effectiveness of this method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2018.2852630</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8989-2812</orcidid><orcidid>https://orcid.org/0000-0001-7474-0309</orcidid><orcidid>https://orcid.org/0000-0001-8137-9507</orcidid><orcidid>https://orcid.org/0000-0001-9679-7306</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2019-03, Vol.13 (1), p.842-853
issn 1932-8184
1937-9234
language eng
recordid cdi_ieee_primary_8411550
source IEEE Electronic Library (IEL)
subjects <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k-means</tex-math> </inline-formula> </named-content> clustering
Batteries
Cluster analysis
Clustering
Cost benefits analysis
Distribution management
Economics
Electric energy storage
electric energy storage (EES)
Energy storage
Feeders
genetic algorithm (GA)
Investment
Planning
Power system reliability
Reliability
Reliability analysis
Rural communities
Storage capacity
System reliability
Vector quantization
title SAIDI Constrained Economic Planning and Utilization of Central Storage in Rural Distribution Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAIDI%20Constrained%20Economic%20Planning%20and%20Utilization%20of%20Central%20Storage%20in%20Rural%20Distribution%20Networks&rft.jtitle=IEEE%20systems%20journal&rft.au=Narimani,%20Afsaneh&rft.date=2019-03&rft.volume=13&rft.issue=1&rft.spage=842&rft.epage=853&rft.pages=842-853&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2018.2852630&rft_dat=%3Cproquest_RIE%3E2185733263%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185733263&rft_id=info:pmid/&rft_ieee_id=8411550&rfr_iscdi=true