Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications

Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.40073-40084
Hauptverfasser: Li, Hongjian, Wang, Huochen, Xiong, Anping, Lai, Jun, Tian, Wenhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40084
container_issue
container_start_page 40073
container_title IEEE access
container_volume 6
creator Li, Hongjian
Wang, Huochen
Xiong, Anping
Lai, Jun
Tian, Wenhong
description Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.
doi_str_mv 10.1109/ACCESS.2018.2855720
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8410882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8410882</ieee_id><doaj_id>oai_doaj_org_article_ef6cc48dfd7c4c549a7bf707ba0f7df8</doaj_id><sourcerecordid>2455932768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</originalsourceid><addsrcrecordid>eNpNkU-L2zAQxU3ZQsM2nyAXQc_O6q8lHV03u11Y6CEt9CYkWXIUHMuVnIV8-zp1CJ3LDI95v4F5RbFBcIsQlE910-z2-y2GSGyxYIxj-KFYYVTJkjBSPfw3fyrWOR_hXGKWGF8Vv5t4GnXSU3h3oB50f8khg-jBbnCpu5Q774MNbpjA3h5ce-7D0IG672IK0-GUgY8JfA0d-KYnDepx7IOdWXHIn4uPXvfZrW_9sfj1vPvZfC_ffry8NvVbaSkUU4kRqSA1xiCivXQee-Yra1peWQFxCw2U3DoiDaWorSg0REvMjNVIC-dkRR6L14XbRn1UYwonnS4q6qD-CTF1Sqcp2N4pN5MtFa1vuaWWUam58Rxyo6HnrRcz68vCGlP8c3Z5Usd4TvNTssKUMUkwr65bZNmyKeacnL9fRVBdE1FLIuqaiLolMrs2iys45-4OQREUApO_MqCIRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455932768</pqid></control><display><type>article</type><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</creator><creatorcontrib>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</creatorcontrib><description>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2855720</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Big Data ; Big Data applications ; Clustering algorithms ; Crime ; Cybercrime ; Data processing ; deadline-constrained ; Deadlines ; Energy consumption ; energy-efficient ; Response time ; Schedules ; Scheduling ; Scheduling algorithms ; Spark application ; Sparks ; Task analysis ; Task scheduling ; tasks scheduling algorithm</subject><ispartof>IEEE access, 2018-01, Vol.6, p.40073-40084</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</citedby><cites>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</cites><orcidid>0000-0002-5551-9796 ; 0000-0002-8558-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8410882$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Hongjian</creatorcontrib><creatorcontrib>Wang, Huochen</creatorcontrib><creatorcontrib>Xiong, Anping</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Big Data applications</subject><subject>Clustering algorithms</subject><subject>Crime</subject><subject>Cybercrime</subject><subject>Data processing</subject><subject>deadline-constrained</subject><subject>Deadlines</subject><subject>Energy consumption</subject><subject>energy-efficient</subject><subject>Response time</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>Spark application</subject><subject>Sparks</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>tasks scheduling algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU-L2zAQxU3ZQsM2nyAXQc_O6q8lHV03u11Y6CEt9CYkWXIUHMuVnIV8-zp1CJ3LDI95v4F5RbFBcIsQlE910-z2-y2GSGyxYIxj-KFYYVTJkjBSPfw3fyrWOR_hXGKWGF8Vv5t4GnXSU3h3oB50f8khg-jBbnCpu5Q774MNbpjA3h5ce-7D0IG672IK0-GUgY8JfA0d-KYnDepx7IOdWXHIn4uPXvfZrW_9sfj1vPvZfC_ffry8NvVbaSkUU4kRqSA1xiCivXQee-Yra1peWQFxCw2U3DoiDaWorSg0REvMjNVIC-dkRR6L14XbRn1UYwonnS4q6qD-CTF1Sqcp2N4pN5MtFa1vuaWWUam58Rxyo6HnrRcz68vCGlP8c3Z5Usd4TvNTssKUMUkwr65bZNmyKeacnL9fRVBdE1FLIuqaiLolMrs2iys45-4OQREUApO_MqCIRA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, Hongjian</creator><creator>Wang, Huochen</creator><creator>Xiong, Anping</creator><creator>Lai, Jun</creator><creator>Tian, Wenhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-8558-0838</orcidid></search><sort><creationdate>20180101</creationdate><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><author>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Big Data applications</topic><topic>Clustering algorithms</topic><topic>Crime</topic><topic>Cybercrime</topic><topic>Data processing</topic><topic>deadline-constrained</topic><topic>Deadlines</topic><topic>Energy consumption</topic><topic>energy-efficient</topic><topic>Response time</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>Spark application</topic><topic>Sparks</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>tasks scheduling algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongjian</creatorcontrib><creatorcontrib>Wang, Huochen</creatorcontrib><creatorcontrib>Xiong, Anping</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongjian</au><au>Wang, Huochen</au><au>Xiong, Anping</au><au>Lai, Jun</au><au>Tian, Wenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>40073</spage><epage>40084</epage><pages>40073-40084</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2855720</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-8558-0838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.40073-40084
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8410882
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Big Data
Big Data applications
Clustering algorithms
Crime
Cybercrime
Data processing
deadline-constrained
Deadlines
Energy consumption
energy-efficient
Response time
Schedules
Scheduling
Scheduling algorithms
Spark application
Sparks
Task analysis
Task scheduling
tasks scheduling algorithm
title Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Energy-Efficient%20Scheduling%20Algorithms%20for%20Big%20Data%20Applications&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongjian&rft.date=2018-01-01&rft.volume=6&rft.spage=40073&rft.epage=40084&rft.pages=40073-40084&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2855720&rft_dat=%3Cproquest_ieee_%3E2455932768%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455932768&rft_id=info:pmid/&rft_ieee_id=8410882&rft_doaj_id=oai_doaj_org_article_ef6cc48dfd7c4c549a7bf707ba0f7df8&rfr_iscdi=true