Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications
Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.40073-40084 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40084 |
---|---|
container_issue | |
container_start_page | 40073 |
container_title | IEEE access |
container_volume | 6 |
creator | Li, Hongjian Wang, Huochen Xiong, Anping Lai, Jun Tian, Wenhong |
description | Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions. |
doi_str_mv | 10.1109/ACCESS.2018.2855720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8410882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8410882</ieee_id><doaj_id>oai_doaj_org_article_ef6cc48dfd7c4c549a7bf707ba0f7df8</doaj_id><sourcerecordid>2455932768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</originalsourceid><addsrcrecordid>eNpNkU-L2zAQxU3ZQsM2nyAXQc_O6q8lHV03u11Y6CEt9CYkWXIUHMuVnIV8-zp1CJ3LDI95v4F5RbFBcIsQlE910-z2-y2GSGyxYIxj-KFYYVTJkjBSPfw3fyrWOR_hXGKWGF8Vv5t4GnXSU3h3oB50f8khg-jBbnCpu5Q774MNbpjA3h5ce-7D0IG672IK0-GUgY8JfA0d-KYnDepx7IOdWXHIn4uPXvfZrW_9sfj1vPvZfC_ffry8NvVbaSkUU4kRqSA1xiCivXQee-Yra1peWQFxCw2U3DoiDaWorSg0REvMjNVIC-dkRR6L14XbRn1UYwonnS4q6qD-CTF1Sqcp2N4pN5MtFa1vuaWWUam58Rxyo6HnrRcz68vCGlP8c3Z5Usd4TvNTssKUMUkwr65bZNmyKeacnL9fRVBdE1FLIuqaiLolMrs2iys45-4OQREUApO_MqCIRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455932768</pqid></control><display><type>article</type><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</creator><creatorcontrib>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</creatorcontrib><description>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2855720</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Big Data ; Big Data applications ; Clustering algorithms ; Crime ; Cybercrime ; Data processing ; deadline-constrained ; Deadlines ; Energy consumption ; energy-efficient ; Response time ; Schedules ; Scheduling ; Scheduling algorithms ; Spark application ; Sparks ; Task analysis ; Task scheduling ; tasks scheduling algorithm</subject><ispartof>IEEE access, 2018-01, Vol.6, p.40073-40084</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</citedby><cites>FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</cites><orcidid>0000-0002-5551-9796 ; 0000-0002-8558-0838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8410882$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Hongjian</creatorcontrib><creatorcontrib>Wang, Huochen</creatorcontrib><creatorcontrib>Xiong, Anping</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Big Data applications</subject><subject>Clustering algorithms</subject><subject>Crime</subject><subject>Cybercrime</subject><subject>Data processing</subject><subject>deadline-constrained</subject><subject>Deadlines</subject><subject>Energy consumption</subject><subject>energy-efficient</subject><subject>Response time</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Scheduling algorithms</subject><subject>Spark application</subject><subject>Sparks</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>tasks scheduling algorithm</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU-L2zAQxU3ZQsM2nyAXQc_O6q8lHV03u11Y6CEt9CYkWXIUHMuVnIV8-zp1CJ3LDI95v4F5RbFBcIsQlE910-z2-y2GSGyxYIxj-KFYYVTJkjBSPfw3fyrWOR_hXGKWGF8Vv5t4GnXSU3h3oB50f8khg-jBbnCpu5Q774MNbpjA3h5ce-7D0IG672IK0-GUgY8JfA0d-KYnDepx7IOdWXHIn4uPXvfZrW_9sfj1vPvZfC_ffry8NvVbaSkUU4kRqSA1xiCivXQee-Yra1peWQFxCw2U3DoiDaWorSg0REvMjNVIC-dkRR6L14XbRn1UYwonnS4q6qD-CTF1Sqcp2N4pN5MtFa1vuaWWUam58Rxyo6HnrRcz68vCGlP8c3Z5Usd4TvNTssKUMUkwr65bZNmyKeacnL9fRVBdE1FLIuqaiLolMrs2iys45-4OQREUApO_MqCIRA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, Hongjian</creator><creator>Wang, Huochen</creator><creator>Xiong, Anping</creator><creator>Lai, Jun</creator><creator>Tian, Wenhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-8558-0838</orcidid></search><sort><creationdate>20180101</creationdate><title>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</title><author>Li, Hongjian ; Wang, Huochen ; Xiong, Anping ; Lai, Jun ; Tian, Wenhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-213604bbb13af9ef2f5f6cbd76c802d0b097ce39b441d640b3a925bca1a8ee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Big Data applications</topic><topic>Clustering algorithms</topic><topic>Crime</topic><topic>Cybercrime</topic><topic>Data processing</topic><topic>deadline-constrained</topic><topic>Deadlines</topic><topic>Energy consumption</topic><topic>energy-efficient</topic><topic>Response time</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Scheduling algorithms</topic><topic>Spark application</topic><topic>Sparks</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>tasks scheduling algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongjian</creatorcontrib><creatorcontrib>Wang, Huochen</creatorcontrib><creatorcontrib>Xiong, Anping</creatorcontrib><creatorcontrib>Lai, Jun</creatorcontrib><creatorcontrib>Tian, Wenhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongjian</au><au>Wang, Huochen</au><au>Xiong, Anping</au><au>Lai, Jun</au><au>Tian, Wenhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>40073</spage><epage>40084</epage><pages>40073-40084</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, big data analytics has been widely applied in addressing the growing cybercrime threats. However, energy consumption is explosive increasing with the fast growth of big data processing in anti-cybercrime. In this paper, an energy-efficient framework for big data applications is proposed to reduce energy consumption while satisfying deadline constrains. First, the problem of energy-efficient tasks scheduling of a single Spark job is modeled as an integer program. We design an energy-efficient tasks scheduling algorithm to minimize the energy consumption for big data application in Spark. To avoid service-level agreement violations for execution time, we propose an optimal task scheduling algorithm with deadline constrains by tradingoff execution time and energy consumption. Experiments on a Spark cluster are performed to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite. Our algorithms consume less energy on average than FIFO and FAIR under deadlines. The optimal algorithm is able to find near optimal tasks schedules to trade off energy consumed and response time benefit in small shuffle partitions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2855720</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5551-9796</orcidid><orcidid>https://orcid.org/0000-0002-8558-0838</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.40073-40084 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8410882 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Big Data Big Data applications Clustering algorithms Crime Cybercrime Data processing deadline-constrained Deadlines Energy consumption energy-efficient Response time Schedules Scheduling Scheduling algorithms Spark application Sparks Task analysis Task scheduling tasks scheduling algorithm |
title | Comparative Analysis of Energy-Efficient Scheduling Algorithms for Big Data Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20Energy-Efficient%20Scheduling%20Algorithms%20for%20Big%20Data%20Applications&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongjian&rft.date=2018-01-01&rft.volume=6&rft.spage=40073&rft.epage=40084&rft.pages=40073-40084&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2855720&rft_dat=%3Cproquest_ieee_%3E2455932768%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455932768&rft_id=info:pmid/&rft_ieee_id=8410882&rft_doaj_id=oai_doaj_org_article_ef6cc48dfd7c4c549a7bf707ba0f7df8&rfr_iscdi=true |