Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode
We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2018-08, Vol.65 (8), p.2310-2315 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2315 |
---|---|
container_issue | 8 |
container_start_page | 2310 |
container_title | IEEE transactions on nuclear science |
container_volume | 65 |
creator | Zhang, Mei Sheng, Liang Hu, Huasi Li, Yang Liu, Yongtang Hei, Dongwei Peng, Bodong Zhao, Jizhen |
description | We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns. |
doi_str_mv | 10.1109/TNS.2018.2855447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8410581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8410581</ieee_id><sourcerecordid>2090822230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbxs4nmx3d2y7dEQRBJUEjAeN7NlypZAu3aL0Zs_3RKIp7bT997MfITcMjpgjMqH5etikFEmBpngvCjKM9JjnIuU8VKckx6NX6kspLwkV123ic-CU94jv8sGncdgFGwTsKtk_N2iNzu0IRam9gu7YNYQjLOJ08kk3uw6maPXzu_AKjxUF_vagnUdKhcTpjtYY7QGtJ3RBn3yYUKTvBjlXRe8aZN544JTEBq3wmtyoWHb4c3p7JP3p_Fy9JzO3ibT0eMsVZlkIY0r5TqXAKqAISAUfIWoSi1FXg-HJRW60KuyFAC1khwVk6JkUDPKspID5nmf3B9zW-8-93GrauP23saWVUYlFVmW5TSq6FF1mLXzqKs2wgD_UzFaHThXkXN14FydOEfL3dFiEPFfLgpGuWD5HwP2fFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090822230</pqid></control><display><type>article</type><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</creator><creatorcontrib>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</creatorcontrib><description>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2855447</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Cathodes ; Computer simulation ; Direct current ; Gating ; Gating time ; Image intensifiers ; Image transmission ; Impedance ; Mathematical models ; Microchannel plates ; Microchannels ; Microstrip ; microstrip photocathode (PC) ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; Pulse propagation ; Resistance ; ultrafast image intensifier</subject><ispartof>IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2310-2315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</citedby><cites>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</cites><orcidid>0000-0001-9983-7705 ; 0000-0002-4983-3703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8410581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8410581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Yongtang</creatorcontrib><creatorcontrib>Hei, Dongwei</creatorcontrib><creatorcontrib>Peng, Bodong</creatorcontrib><creatorcontrib>Zhao, Jizhen</creatorcontrib><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</description><subject>Attenuation</subject><subject>Cathodes</subject><subject>Computer simulation</subject><subject>Direct current</subject><subject>Gating</subject><subject>Gating time</subject><subject>Image intensifiers</subject><subject>Image transmission</subject><subject>Impedance</subject><subject>Mathematical models</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Microstrip</subject><subject>microstrip photocathode (PC)</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Pulse propagation</subject><subject>Resistance</subject><subject>ultrafast image intensifier</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbxs4nmx3d2y7dEQRBJUEjAeN7NlypZAu3aL0Zs_3RKIp7bT997MfITcMjpgjMqH5etikFEmBpngvCjKM9JjnIuU8VKckx6NX6kspLwkV123ic-CU94jv8sGncdgFGwTsKtk_N2iNzu0IRam9gu7YNYQjLOJ08kk3uw6maPXzu_AKjxUF_vagnUdKhcTpjtYY7QGtJ3RBn3yYUKTvBjlXRe8aZN544JTEBq3wmtyoWHb4c3p7JP3p_Fy9JzO3ibT0eMsVZlkIY0r5TqXAKqAISAUfIWoSi1FXg-HJRW60KuyFAC1khwVk6JkUDPKspID5nmf3B9zW-8-93GrauP23saWVUYlFVmW5TSq6FF1mLXzqKs2wgD_UzFaHThXkXN14FydOEfL3dFiEPFfLgpGuWD5HwP2fFU</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zhang, Mei</creator><creator>Sheng, Liang</creator><creator>Hu, Huasi</creator><creator>Li, Yang</creator><creator>Liu, Yongtang</creator><creator>Hei, Dongwei</creator><creator>Peng, Bodong</creator><creator>Zhao, Jizhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9983-7705</orcidid><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid></search><sort><creationdate>20180801</creationdate><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><author>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>Cathodes</topic><topic>Computer simulation</topic><topic>Direct current</topic><topic>Gating</topic><topic>Gating time</topic><topic>Image intensifiers</topic><topic>Image transmission</topic><topic>Impedance</topic><topic>Mathematical models</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Microstrip</topic><topic>microstrip photocathode (PC)</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Pulse propagation</topic><topic>Resistance</topic><topic>ultrafast image intensifier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Yongtang</creatorcontrib><creatorcontrib>Hei, Dongwei</creatorcontrib><creatorcontrib>Peng, Bodong</creatorcontrib><creatorcontrib>Zhao, Jizhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Mei</au><au>Sheng, Liang</au><au>Hu, Huasi</au><au>Li, Yang</au><au>Liu, Yongtang</au><au>Hei, Dongwei</au><au>Peng, Bodong</au><au>Zhao, Jizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>2310</spage><epage>2315</epage><pages>2310-2315</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2855447</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9983-7705</orcidid><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2310-2315 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_8410581 |
source | IEEE Electronic Library (IEL) |
subjects | Attenuation Cathodes Computer simulation Direct current Gating Gating time Image intensifiers Image transmission Impedance Mathematical models Microchannel plates Microchannels Microstrip microstrip photocathode (PC) Photocathodes Photoelectric effect Photoelectric emission Pulse propagation Resistance ultrafast image intensifier |
title | Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Investigation%20of%20Gating%20Performance%20of%20Subnanosecond%20Image%20Intensifier%20With%20Microstrip%20Photocathode&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zhang,%20Mei&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=2310&rft.epage=2315&rft.pages=2310-2315&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2855447&rft_dat=%3Cproquest_RIE%3E2090822230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090822230&rft_id=info:pmid/&rft_ieee_id=8410581&rfr_iscdi=true |