Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode

We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2018-08, Vol.65 (8), p.2310-2315
Hauptverfasser: Zhang, Mei, Sheng, Liang, Hu, Huasi, Li, Yang, Liu, Yongtang, Hei, Dongwei, Peng, Bodong, Zhao, Jizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2315
container_issue 8
container_start_page 2310
container_title IEEE transactions on nuclear science
container_volume 65
creator Zhang, Mei
Sheng, Liang
Hu, Huasi
Li, Yang
Liu, Yongtang
Hei, Dongwei
Peng, Bodong
Zhao, Jizhen
description We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.
doi_str_mv 10.1109/TNS.2018.2855447
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8410581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8410581</ieee_id><sourcerecordid>2090822230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbxs4nmx3d2y7dEQRBJUEjAeN7NlypZAu3aL0Zs_3RKIp7bT997MfITcMjpgjMqH5etikFEmBpngvCjKM9JjnIuU8VKckx6NX6kspLwkV123ic-CU94jv8sGncdgFGwTsKtk_N2iNzu0IRam9gu7YNYQjLOJ08kk3uw6maPXzu_AKjxUF_vagnUdKhcTpjtYY7QGtJ3RBn3yYUKTvBjlXRe8aZN544JTEBq3wmtyoWHb4c3p7JP3p_Fy9JzO3ibT0eMsVZlkIY0r5TqXAKqAISAUfIWoSi1FXg-HJRW60KuyFAC1khwVk6JkUDPKspID5nmf3B9zW-8-93GrauP23saWVUYlFVmW5TSq6FF1mLXzqKs2wgD_UzFaHThXkXN14FydOEfL3dFiEPFfLgpGuWD5HwP2fFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090822230</pqid></control><display><type>article</type><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</creator><creatorcontrib>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</creatorcontrib><description>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2855447</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Cathodes ; Computer simulation ; Direct current ; Gating ; Gating time ; Image intensifiers ; Image transmission ; Impedance ; Mathematical models ; Microchannel plates ; Microchannels ; Microstrip ; microstrip photocathode (PC) ; Photocathodes ; Photoelectric effect ; Photoelectric emission ; Pulse propagation ; Resistance ; ultrafast image intensifier</subject><ispartof>IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2310-2315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</citedby><cites>FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</cites><orcidid>0000-0001-9983-7705 ; 0000-0002-4983-3703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8410581$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8410581$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Yongtang</creatorcontrib><creatorcontrib>Hei, Dongwei</creatorcontrib><creatorcontrib>Peng, Bodong</creatorcontrib><creatorcontrib>Zhao, Jizhen</creatorcontrib><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</description><subject>Attenuation</subject><subject>Cathodes</subject><subject>Computer simulation</subject><subject>Direct current</subject><subject>Gating</subject><subject>Gating time</subject><subject>Image intensifiers</subject><subject>Image transmission</subject><subject>Impedance</subject><subject>Mathematical models</subject><subject>Microchannel plates</subject><subject>Microchannels</subject><subject>Microstrip</subject><subject>microstrip photocathode (PC)</subject><subject>Photocathodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Pulse propagation</subject><subject>Resistance</subject><subject>ultrafast image intensifier</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbxs4nmx3d2y7dEQRBJUEjAeN7NlypZAu3aL0Zs_3RKIp7bT997MfITcMjpgjMqH5etikFEmBpngvCjKM9JjnIuU8VKckx6NX6kspLwkV123ic-CU94jv8sGncdgFGwTsKtk_N2iNzu0IRam9gu7YNYQjLOJ08kk3uw6maPXzu_AKjxUF_vagnUdKhcTpjtYY7QGtJ3RBn3yYUKTvBjlXRe8aZN544JTEBq3wmtyoWHb4c3p7JP3p_Fy9JzO3ibT0eMsVZlkIY0r5TqXAKqAISAUfIWoSi1FXg-HJRW60KuyFAC1khwVk6JkUDPKspID5nmf3B9zW-8-93GrauP23saWVUYlFVmW5TSq6FF1mLXzqKs2wgD_UzFaHThXkXN14FydOEfL3dFiEPFfLgpGuWD5HwP2fFU</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zhang, Mei</creator><creator>Sheng, Liang</creator><creator>Hu, Huasi</creator><creator>Li, Yang</creator><creator>Liu, Yongtang</creator><creator>Hei, Dongwei</creator><creator>Peng, Bodong</creator><creator>Zhao, Jizhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9983-7705</orcidid><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid></search><sort><creationdate>20180801</creationdate><title>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</title><author>Zhang, Mei ; Sheng, Liang ; Hu, Huasi ; Li, Yang ; Liu, Yongtang ; Hei, Dongwei ; Peng, Bodong ; Zhao, Jizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5443f39aac4a6aea45deec7f983b66708f4fd778aabc95ec19871ab101275ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Attenuation</topic><topic>Cathodes</topic><topic>Computer simulation</topic><topic>Direct current</topic><topic>Gating</topic><topic>Gating time</topic><topic>Image intensifiers</topic><topic>Image transmission</topic><topic>Impedance</topic><topic>Mathematical models</topic><topic>Microchannel plates</topic><topic>Microchannels</topic><topic>Microstrip</topic><topic>microstrip photocathode (PC)</topic><topic>Photocathodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Pulse propagation</topic><topic>Resistance</topic><topic>ultrafast image intensifier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Sheng, Liang</creatorcontrib><creatorcontrib>Hu, Huasi</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liu, Yongtang</creatorcontrib><creatorcontrib>Hei, Dongwei</creatorcontrib><creatorcontrib>Peng, Bodong</creatorcontrib><creatorcontrib>Zhao, Jizhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Mei</au><au>Sheng, Liang</au><au>Hu, Huasi</au><au>Li, Yang</au><au>Liu, Yongtang</au><au>Hei, Dongwei</au><au>Peng, Bodong</au><au>Zhao, Jizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>2310</spage><epage>2315</epage><pages>2310-2315</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>We have studied the transmission performance of gating pulses on the microstrip photocathode (PC) of an ultrafast image intensifier. A numerical calculation model that included the impedance mismatch between the strip PC and the input line was established to simulate gating pulse propagation. The transmission performances of the pulses were investigated using simulations and experimental evaluations of several factors that affect transmission, including the PC-to-microchannel plate (MCP) input spacing, the PC resistance, the input pulsewidth, and the photocurrent. In addition, some of the simulation results were validated experimentally. The research produced the following results: 1) accumulation among the transmitted and reflected pulses is a major factor in broadening the width of the gating pulse; 2) reduction of the PC-to-MCP input spacing and a slight increase in direct current resistance can improve the gating speed and reduce the delay between the input and output ends; 3) when the input pulsewidth is more than 500 ps, the width of the transmitted pulse on the PC is almost equal to that of the input pulse, and amplitude attenuation is almost constant; and 4) the minimum gating time that can be achieved using this device was approximately 420 ps. Finally, preliminary testing of the optical gating time was implemented. The experimental results showed that when an input pulse with a full width of 0.8 ns was superimposed on the strip PC, the image intensifier could achieve an optical gating time of 0.7 ns.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2855447</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9983-7705</orcidid><orcidid>https://orcid.org/0000-0002-4983-3703</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2018-08, Vol.65 (8), p.2310-2315
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_8410581
source IEEE Electronic Library (IEL)
subjects Attenuation
Cathodes
Computer simulation
Direct current
Gating
Gating time
Image intensifiers
Image transmission
Impedance
Mathematical models
Microchannel plates
Microchannels
Microstrip
microstrip photocathode (PC)
Photocathodes
Photoelectric effect
Photoelectric emission
Pulse propagation
Resistance
ultrafast image intensifier
title Theoretical and Experimental Investigation of Gating Performance of Subnanosecond Image Intensifier With Microstrip Photocathode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Investigation%20of%20Gating%20Performance%20of%20Subnanosecond%20Image%20Intensifier%20With%20Microstrip%20Photocathode&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zhang,%20Mei&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=2310&rft.epage=2315&rft.pages=2310-2315&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2855447&rft_dat=%3Cproquest_RIE%3E2090822230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090822230&rft_id=info:pmid/&rft_ieee_id=8410581&rfr_iscdi=true