Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks

We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2019-09, Vol.41 (9), p.2236-2250
Hauptverfasser: Xue, Tianfan, Wu, Jiajun, Bouman, Katherine L., Freeman, William T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2250
container_issue 9
container_start_page 2236
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 41
creator Xue, Tianfan
Wu, Jiajun
Bouman, Katherine L.
Freeman, William T.
description We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.
doi_str_mv 10.1109/TPAMI.2018.2854726
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8409321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8409321</ieee_id><sourcerecordid>2070239712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-2291eb0145437bf3bb5d0b9f34b6d2d8abe04bb879410f24923cd247dd5a7ebe3</originalsourceid><addsrcrecordid>eNpdkE1P5DAMhiO0CGaBPwASqsRlLx0cJ22TvaFhYZGGD4mPa5W0rih0miFpQfPvt90ZOHDywY9f2w9jhxymnIM-fbg7u76aInA1RZXIDNMtNuFa6FgkQv9gE-Apxkqh2mU_Q3gB4DIBscN2BQBIlcGEPT3VoTdNdL5qzaIuwu_ovnPFswldXUQXfdd7ii6pJW-62rXRe22iuVmRpzKaeRdCNHPtu2v6sTvE3FD34fxr2GfblWkCHWzqHnu8-PMw-xvPby-vZmfzuBAJ72JEzcmOZ0mR2UpYm5RgdSWkTUsslbEE0lqVacmhQqlRFCXKrCwTk5Elscd-rXOX3r31FLp8UYeCmsa05PqQI2SAQmccB_TkG_riej8cPVCY6lRLRD5QuKaK8TtPVb709cL4Vc4hH63n_63no_V8Y30YOt5E93ZB5dfIp-YBOFoDNRF9tZUELYad_wAFGoYj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269694221</pqid></control><display><type>article</type><title>Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Tianfan ; Wu, Jiajun ; Bouman, Katherine L. ; Freeman, William T.</creator><creatorcontrib>Xue, Tianfan ; Wu, Jiajun ; Bouman, Katherine L. ; Freeman, William T.</creatorcontrib><description>We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2854726</identifier><identifier>PMID: 30004870</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Computer &amp; video games ; convolutional networks ; cross convolution ; Data models ; Feature maps ; frame synthesis ; Frames ; future prediction ; Image contrast ; Image generation ; Object motion ; Predictive models ; Probabilistic logic ; probabilistic modeling ; Probabilistic models ; Probability theory ; Synthesis ; Task analysis ; Training ; Two dimensional models ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2236-2250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-2291eb0145437bf3bb5d0b9f34b6d2d8abe04bb879410f24923cd247dd5a7ebe3</citedby><cites>FETCH-LOGICAL-c351t-2291eb0145437bf3bb5d0b9f34b6d2d8abe04bb879410f24923cd247dd5a7ebe3</cites><orcidid>0000-0003-0077-4367 ; 0000-0002-4176-343X ; 0000-0002-2231-7995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8409321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8409321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30004870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xue, Tianfan</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Bouman, Katherine L.</creatorcontrib><creatorcontrib>Freeman, William T.</creatorcontrib><title>Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.</description><subject>Computer &amp; video games</subject><subject>convolutional networks</subject><subject>cross convolution</subject><subject>Data models</subject><subject>Feature maps</subject><subject>frame synthesis</subject><subject>Frames</subject><subject>future prediction</subject><subject>Image contrast</subject><subject>Image generation</subject><subject>Object motion</subject><subject>Predictive models</subject><subject>Probabilistic logic</subject><subject>probabilistic modeling</subject><subject>Probabilistic models</subject><subject>Probability theory</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>Training</subject><subject>Two dimensional models</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1P5DAMhiO0CGaBPwASqsRlLx0cJ22TvaFhYZGGD4mPa5W0rih0miFpQfPvt90ZOHDywY9f2w9jhxymnIM-fbg7u76aInA1RZXIDNMtNuFa6FgkQv9gE-Apxkqh2mU_Q3gB4DIBscN2BQBIlcGEPT3VoTdNdL5qzaIuwu_ovnPFswldXUQXfdd7ii6pJW-62rXRe22iuVmRpzKaeRdCNHPtu2v6sTvE3FD34fxr2GfblWkCHWzqHnu8-PMw-xvPby-vZmfzuBAJ72JEzcmOZ0mR2UpYm5RgdSWkTUsslbEE0lqVacmhQqlRFCXKrCwTk5Elscd-rXOX3r31FLp8UYeCmsa05PqQI2SAQmccB_TkG_riej8cPVCY6lRLRD5QuKaK8TtPVb709cL4Vc4hH63n_63no_V8Y30YOt5E93ZB5dfIp-YBOFoDNRF9tZUELYad_wAFGoYj</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Xue, Tianfan</creator><creator>Wu, Jiajun</creator><creator>Bouman, Katherine L.</creator><creator>Freeman, William T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0077-4367</orcidid><orcidid>https://orcid.org/0000-0002-4176-343X</orcidid><orcidid>https://orcid.org/0000-0002-2231-7995</orcidid></search><sort><creationdate>20190901</creationdate><title>Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks</title><author>Xue, Tianfan ; Wu, Jiajun ; Bouman, Katherine L. ; Freeman, William T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-2291eb0145437bf3bb5d0b9f34b6d2d8abe04bb879410f24923cd247dd5a7ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer &amp; video games</topic><topic>convolutional networks</topic><topic>cross convolution</topic><topic>Data models</topic><topic>Feature maps</topic><topic>frame synthesis</topic><topic>Frames</topic><topic>future prediction</topic><topic>Image contrast</topic><topic>Image generation</topic><topic>Object motion</topic><topic>Predictive models</topic><topic>Probabilistic logic</topic><topic>probabilistic modeling</topic><topic>Probabilistic models</topic><topic>Probability theory</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>Training</topic><topic>Two dimensional models</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Tianfan</creatorcontrib><creatorcontrib>Wu, Jiajun</creatorcontrib><creatorcontrib>Bouman, Katherine L.</creatorcontrib><creatorcontrib>Freeman, William T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Tianfan</au><au>Wu, Jiajun</au><au>Bouman, Katherine L.</au><au>Freeman, William T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>41</volume><issue>9</issue><spage>2236</spage><epage>2250</epage><pages>2236-2250</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose to model future frames in a probabilistic manner. Our probabilistic model makes it possible for us to sample and synthesize many possible future frames from a single input image. To synthesize realistic movement of objects, we propose a novel network structure, namely a Cross Convolutional Network; this network encodes image and motion information as feature maps and convolutional kernels, respectively. In experiments, our model performs well on synthetic data, such as 2D shapes and animated game sprites, and on real-world video frames. We present analyses of the learned network representations, showing it is implicitly learning a compact encoding of object appearance and motion. We also demonstrate a few of its applications, including visual analogy-making and video extrapolation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30004870</pmid><doi>10.1109/TPAMI.2018.2854726</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0077-4367</orcidid><orcidid>https://orcid.org/0000-0002-4176-343X</orcidid><orcidid>https://orcid.org/0000-0002-2231-7995</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2236-2250
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_8409321
source IEEE Electronic Library (IEL)
subjects Computer & video games
convolutional networks
cross convolution
Data models
Feature maps
frame synthesis
Frames
future prediction
Image contrast
Image generation
Object motion
Predictive models
Probabilistic logic
probabilistic modeling
Probabilistic models
Probability theory
Synthesis
Task analysis
Training
Two dimensional models
Visualization
title Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Dynamics:%20Stochastic%20Future%20Generation%20via%20Layered%20Cross%20Convolutional%20Networks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Xue,%20Tianfan&rft.date=2019-09-01&rft.volume=41&rft.issue=9&rft.spage=2236&rft.epage=2250&rft.pages=2236-2250&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2854726&rft_dat=%3Cproquest_RIE%3E2070239712%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2269694221&rft_id=info:pmid/30004870&rft_ieee_id=8409321&rfr_iscdi=true