A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines

A significant portion of faults experienced by electrical machines is caused by degraded insulation. In order to reduce the effects of a failure, it is important to monitor the health of the insulation, preferably while the machine continues operation without any expensive equipment. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-11, Vol.54 (6), p.5897-5906
Hauptverfasser: Jensen, William R., Strangas, Elias G., Foster, Shanelle N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5906
container_issue 6
container_start_page 5897
container_title IEEE transactions on industry applications
container_volume 54
creator Jensen, William R.
Strangas, Elias G.
Foster, Shanelle N.
description A significant portion of faults experienced by electrical machines is caused by degraded insulation. In order to reduce the effects of a failure, it is important to monitor the health of the insulation, preferably while the machine continues operation without any expensive equipment. In this paper, an online method to calculate the remaining useful lifetime (RUL) of the stator insulation with a simple equipment is proposed. The accelerated degradation testing was performed by exposing the stator of an electric machine to high temperatures. An extended Kalman filter algorithm is developed to calculate the RUL. A simple analog circuit is used to show how lower sampling rates can be used to capture the necessary information for prognosis. With this circuit, the same trend used to provide a prognosis for the insulation can be measured online without using any expensive or special technology.
doi_str_mv 10.1109/TIA.2018.2854408
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8408756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8408756</ieee_id><sourcerecordid>2118026069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-65125a1036ac989cf19139d72439ef87276fb8cdd2d8d92a2110ca77acd6ac003</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wcuC562TZHeTOZZqdaGlgvUcYjZrt9SkJtuC_97UFk_DMO-bYR4htxRGlAI-LOvxiAGVIybLogB5RgYUOebIK3FOBgDIc0QsLslVjGsAWpS0GJDZOJvbfuWbrPUhW7hN52z21us-dbWLu43uO--y1-A_nY9d_MNqt7ehtyF_DN3eumyuzSrl4jW5aPUm2ptTHZL36dNy8pLPFs_1ZDzLDS9Fn1clZaWmwCttUKJpKVKOjWAFR9tKwUTVfkjTNKyRDTLN0oNGC6FNkxIAfEjuj3u3wX_vbOzV2u-CSydVYiWwCipMFBwpE3yMwbZqG7ovHX4UBXVwppIzdXCmTs5S5O4Y6ay1_7hMI1FW_BfqyWb5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118026069</pqid></control><display><type>article</type><title>A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Jensen, William R. ; Strangas, Elias G. ; Foster, Shanelle N.</creator><creatorcontrib>Jensen, William R. ; Strangas, Elias G. ; Foster, Shanelle N.</creatorcontrib><description>A significant portion of faults experienced by electrical machines is caused by degraded insulation. In order to reduce the effects of a failure, it is important to monitor the health of the insulation, preferably while the machine continues operation without any expensive equipment. In this paper, an online method to calculate the remaining useful lifetime (RUL) of the stator insulation with a simple equipment is proposed. The accelerated degradation testing was performed by exposing the stator of an electric machine to high temperatures. An extended Kalman filter algorithm is developed to calculate the RUL. A simple analog circuit is used to show how lower sampling rates can be used to capture the necessary information for prognosis. With this circuit, the same trend used to provide a prognosis for the insulation can be measured online without using any expensive or special technology.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2854408</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerated tests ; Analog circuits ; Capacitance ; Current measurement ; Degradation ; Electrical machines ; Extended Kalman filter ; extended Kalman filter (EKF) ; fault prognosis ; Insulation ; leakage current ; Leakage currents ; Mathematical analysis ; Prognosis ; Prognostics and health management ; Stators</subject><ispartof>IEEE transactions on industry applications, 2018-11, Vol.54 (6), p.5897-5906</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-65125a1036ac989cf19139d72439ef87276fb8cdd2d8d92a2110ca77acd6ac003</citedby><cites>FETCH-LOGICAL-c357t-65125a1036ac989cf19139d72439ef87276fb8cdd2d8d92a2110ca77acd6ac003</cites><orcidid>0000-0003-4699-3493 ; 0000-0001-9630-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8408756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8408756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jensen, William R.</creatorcontrib><creatorcontrib>Strangas, Elias G.</creatorcontrib><creatorcontrib>Foster, Shanelle N.</creatorcontrib><title>A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>A significant portion of faults experienced by electrical machines is caused by degraded insulation. In order to reduce the effects of a failure, it is important to monitor the health of the insulation, preferably while the machine continues operation without any expensive equipment. In this paper, an online method to calculate the remaining useful lifetime (RUL) of the stator insulation with a simple equipment is proposed. The accelerated degradation testing was performed by exposing the stator of an electric machine to high temperatures. An extended Kalman filter algorithm is developed to calculate the RUL. A simple analog circuit is used to show how lower sampling rates can be used to capture the necessary information for prognosis. With this circuit, the same trend used to provide a prognosis for the insulation can be measured online without using any expensive or special technology.</description><subject>Accelerated tests</subject><subject>Analog circuits</subject><subject>Capacitance</subject><subject>Current measurement</subject><subject>Degradation</subject><subject>Electrical machines</subject><subject>Extended Kalman filter</subject><subject>extended Kalman filter (EKF)</subject><subject>fault prognosis</subject><subject>Insulation</subject><subject>leakage current</subject><subject>Leakage currents</subject><subject>Mathematical analysis</subject><subject>Prognosis</subject><subject>Prognostics and health management</subject><subject>Stators</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wcuC562TZHeTOZZqdaGlgvUcYjZrt9SkJtuC_97UFk_DMO-bYR4htxRGlAI-LOvxiAGVIybLogB5RgYUOebIK3FOBgDIc0QsLslVjGsAWpS0GJDZOJvbfuWbrPUhW7hN52z21us-dbWLu43uO--y1-A_nY9d_MNqt7ehtyF_DN3eumyuzSrl4jW5aPUm2ptTHZL36dNy8pLPFs_1ZDzLDS9Fn1clZaWmwCttUKJpKVKOjWAFR9tKwUTVfkjTNKyRDTLN0oNGC6FNkxIAfEjuj3u3wX_vbOzV2u-CSydVYiWwCipMFBwpE3yMwbZqG7ovHX4UBXVwppIzdXCmTs5S5O4Y6ay1_7hMI1FW_BfqyWb5</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Jensen, William R.</creator><creator>Strangas, Elias G.</creator><creator>Foster, Shanelle N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4699-3493</orcidid><orcidid>https://orcid.org/0000-0001-9630-5500</orcidid></search><sort><creationdate>201811</creationdate><title>A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines</title><author>Jensen, William R. ; Strangas, Elias G. ; Foster, Shanelle N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-65125a1036ac989cf19139d72439ef87276fb8cdd2d8d92a2110ca77acd6ac003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accelerated tests</topic><topic>Analog circuits</topic><topic>Capacitance</topic><topic>Current measurement</topic><topic>Degradation</topic><topic>Electrical machines</topic><topic>Extended Kalman filter</topic><topic>extended Kalman filter (EKF)</topic><topic>fault prognosis</topic><topic>Insulation</topic><topic>leakage current</topic><topic>Leakage currents</topic><topic>Mathematical analysis</topic><topic>Prognosis</topic><topic>Prognostics and health management</topic><topic>Stators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, William R.</creatorcontrib><creatorcontrib>Strangas, Elias G.</creatorcontrib><creatorcontrib>Foster, Shanelle N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jensen, William R.</au><au>Strangas, Elias G.</au><au>Foster, Shanelle N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-11</date><risdate>2018</risdate><volume>54</volume><issue>6</issue><spage>5897</spage><epage>5906</epage><pages>5897-5906</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>A significant portion of faults experienced by electrical machines is caused by degraded insulation. In order to reduce the effects of a failure, it is important to monitor the health of the insulation, preferably while the machine continues operation without any expensive equipment. In this paper, an online method to calculate the remaining useful lifetime (RUL) of the stator insulation with a simple equipment is proposed. The accelerated degradation testing was performed by exposing the stator of an electric machine to high temperatures. An extended Kalman filter algorithm is developed to calculate the RUL. A simple analog circuit is used to show how lower sampling rates can be used to capture the necessary information for prognosis. With this circuit, the same trend used to provide a prognosis for the insulation can be measured online without using any expensive or special technology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2854408</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4699-3493</orcidid><orcidid>https://orcid.org/0000-0001-9630-5500</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2018-11, Vol.54 (6), p.5897-5906
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_8408756
source IEEE Electronic Library (IEL)
subjects Accelerated tests
Analog circuits
Capacitance
Current measurement
Degradation
Electrical machines
Extended Kalman filter
extended Kalman filter (EKF)
fault prognosis
Insulation
leakage current
Leakage currents
Mathematical analysis
Prognosis
Prognostics and health management
Stators
title A Method for Online Stator Insulation Prognosis for Inverter-Driven Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Online%20Stator%20Insulation%20Prognosis%20for%20Inverter-Driven%20Machines&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Jensen,%20William%20R.&rft.date=2018-11&rft.volume=54&rft.issue=6&rft.spage=5897&rft.epage=5906&rft.pages=5897-5906&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2854408&rft_dat=%3Cproquest_RIE%3E2118026069%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118026069&rft_id=info:pmid/&rft_ieee_id=8408756&rfr_iscdi=true