Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach

During the requirement-based test approach (RBT&E), it is difficult to objectively and quantitatively forecast system-of-interest (SOI) capabilities (or ability to achieve system requirements under its stated operational environment) through interpretations and/or analysis of obtained element ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2019-09, Vol.13 (3), p.2142-2153
Hauptverfasser: Li, Ya Lun, Roberts, Blake, Grenn, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2153
container_issue 3
container_start_page 2142
container_title IEEE systems journal
container_volume 13
creator Li, Ya Lun
Roberts, Blake
Grenn, Michael W.
description During the requirement-based test approach (RBT&E), it is difficult to objectively and quantitatively forecast system-of-interest (SOI) capabilities (or ability to achieve system requirements under its stated operational environment) through interpretations and/or analysis of obtained element verification data. This challenge remains because RBT&E verification data are collected under unique verification conditions and measurements specific to only the allocated element requirements (e.g., element A's demonstrated y_{1}-mi/h speed under x_{1}{^\circ \text{C}} verification condition versus element B's demonstrated payload of y_{2}-tons at x_{2}-m altitude). Such mismatched and conditional variables cannot be mathematically amalgamated to quantitatively forecast SOI capability. The proposed scenario-based experimental-design (SBED) test approach provides the ability to objectively and quantitatively forecast SOI capability and obtain matching element verification data (i.e., all normalized and standardized to a common input domain and a common unit). By applying design of experiments test methods and response surface methodology statistical techniques, the SBED test approach can model and output element verification data as "system-element capability" responses (or ability to fulfill element requirements) influenced by SOI operational-environment's parameters. It then forecasts the SOI capability (as depicted through sequencing of all elements' interactions) by a Boolean algebraic sum of all the (now matching) "system-element capability" response models. SBED introduces two systems engineering and test and evaluation (T&E) benefits. First, the early delivery of an objective and quantitative SOI capability forecast that has been previously unobtainable; second, more-descriptive element-capability regression models (with respect to the entire SOI operational environment vice just the requirement-specific condition per RBT&E) to assess and mitigate SOI design risks and uncertainties. To demonstrate these advantages, the authors apply SBED's data analysis techniques to an existing U.S. Air Force flight test's dataset and compare the SBED-produced quantitative SOI capability forecasts
doi_str_mv 10.1109/JSYST.2018.2843727
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8398440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8398440</ieee_id><sourcerecordid>2279823767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5667e17ea3358cb9537a5183ff2698874e97b56a083eb0479754bbbeb49abd8f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASiXOKn7F9LKXloUoc0kpwsux006Zqk2C7Ev33pA9x2tVqZmf0IXRP8IAQrJ8-8u98NqCYqAFVnEkqL1CPaCZTTRm_PO40VUTxa3QTwhpjoYTUPfQ1aTwUNsSqXib5PkTYJiPbWldtqrhP5uFwjytI8gJq66smfbYBFsn4twVfbaGOdpO-QKiWdTKDEJNh2_rGFqtbdFXaTYC78-yj-WQ8G72l08_X99FwmhaUZzEVWSaBSLCMCVU4LZi0gihWljTTSkkOWjqRWawYOMylloI758Bxbd1ClayPHk9_u9ifXdfArJudr7tIQ6nUijKZyU5FT6rCNyF4KE3btbd-bwg2B4LmSNAcCJozwc70cDJVAPBvUEwrzjH7AyKqbTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2279823767</pqid></control><display><type>article</type><title>Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ya Lun ; Roberts, Blake ; Grenn, Michael W.</creator><creatorcontrib>Li, Ya Lun ; Roberts, Blake ; Grenn, Michael W.</creatorcontrib><description><![CDATA[During the requirement-based test approach (RBT&E), it is difficult to objectively and quantitatively forecast system-of-interest (SOI) capabilities (or ability to achieve system requirements under its stated operational environment) through interpretations and/or analysis of obtained element verification data. This challenge remains because RBT&E verification data are collected under unique verification conditions and measurements specific to only the allocated element requirements (e.g., element A's demonstrated <inline-formula><tex-math notation="LaTeX">y_{1}</tex-math></inline-formula>-mi/h speed under <inline-formula><tex-math notation="LaTeX">x_{1}{^\circ \text{C}}</tex-math></inline-formula> verification condition versus element B's demonstrated payload of <inline-formula><tex-math notation="LaTeX">y_{2}</tex-math></inline-formula>-tons at <inline-formula><tex-math notation="LaTeX">x_{2}</tex-math></inline-formula>-m altitude). Such mismatched and conditional variables cannot be mathematically amalgamated to quantitatively forecast SOI capability. The proposed scenario-based experimental-design (SBED) test approach provides the ability to objectively and quantitatively forecast SOI capability and obtain matching element verification data (i.e., all normalized and standardized to a common input domain and a common unit). By applying design of experiments test methods and response surface methodology statistical techniques, the SBED test approach can model and output element verification data as "system-element capability" responses (or ability to fulfill element requirements) influenced by SOI operational-environment's parameters. It then forecasts the SOI capability (as depicted through sequencing of all elements' interactions) by a Boolean algebraic sum of all the (now matching) "system-element capability" response models. SBED introduces two systems engineering and test and evaluation (T&E) benefits. First, the early delivery of an objective and quantitative SOI capability forecast that has been previously unobtainable; second, more-descriptive element-capability regression models (with respect to the entire SOI operational environment vice just the requirement-specific condition per RBT&E) to assess and mitigate SOI design risks and uncertainties. To demonstrate these advantages, the authors apply SBED's data analysis techniques to an existing U.S. Air Force flight test's dataset and compare the SBED-produced quantitative SOI capability forecasts against the test's original qualitative conclusions.]]></description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2018.2843727</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Analytical models ; Boolean algebra ; Data analysis ; Data models ; Design of experiments ; Design of experiments (DoE) ; Flight tests ; Model testing ; Payloads ; Predictive models ; Regression analysis ; Regression models ; Response surface methodology ; response surface methodology (RSM) ; Sequential analysis ; Statistical analysis ; system capability ; Systems engineering ; test and evaluation (T&amp;E)</subject><ispartof>IEEE systems journal, 2019-09, Vol.13 (3), p.2142-2153</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5667e17ea3358cb9537a5183ff2698874e97b56a083eb0479754bbbeb49abd8f3</cites><orcidid>0000-0002-3227-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8398440$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8398440$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Ya Lun</creatorcontrib><creatorcontrib>Roberts, Blake</creatorcontrib><creatorcontrib>Grenn, Michael W.</creatorcontrib><title>Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description><![CDATA[During the requirement-based test approach (RBT&E), it is difficult to objectively and quantitatively forecast system-of-interest (SOI) capabilities (or ability to achieve system requirements under its stated operational environment) through interpretations and/or analysis of obtained element verification data. This challenge remains because RBT&E verification data are collected under unique verification conditions and measurements specific to only the allocated element requirements (e.g., element A's demonstrated <inline-formula><tex-math notation="LaTeX">y_{1}</tex-math></inline-formula>-mi/h speed under <inline-formula><tex-math notation="LaTeX">x_{1}{^\circ \text{C}}</tex-math></inline-formula> verification condition versus element B's demonstrated payload of <inline-formula><tex-math notation="LaTeX">y_{2}</tex-math></inline-formula>-tons at <inline-formula><tex-math notation="LaTeX">x_{2}</tex-math></inline-formula>-m altitude). Such mismatched and conditional variables cannot be mathematically amalgamated to quantitatively forecast SOI capability. The proposed scenario-based experimental-design (SBED) test approach provides the ability to objectively and quantitatively forecast SOI capability and obtain matching element verification data (i.e., all normalized and standardized to a common input domain and a common unit). By applying design of experiments test methods and response surface methodology statistical techniques, the SBED test approach can model and output element verification data as "system-element capability" responses (or ability to fulfill element requirements) influenced by SOI operational-environment's parameters. It then forecasts the SOI capability (as depicted through sequencing of all elements' interactions) by a Boolean algebraic sum of all the (now matching) "system-element capability" response models. SBED introduces two systems engineering and test and evaluation (T&E) benefits. First, the early delivery of an objective and quantitative SOI capability forecast that has been previously unobtainable; second, more-descriptive element-capability regression models (with respect to the entire SOI operational environment vice just the requirement-specific condition per RBT&E) to assess and mitigate SOI design risks and uncertainties. To demonstrate these advantages, the authors apply SBED's data analysis techniques to an existing U.S. Air Force flight test's dataset and compare the SBED-produced quantitative SOI capability forecasts against the test's original qualitative conclusions.]]></description><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Boolean algebra</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Design of experiments</subject><subject>Design of experiments (DoE)</subject><subject>Flight tests</subject><subject>Model testing</subject><subject>Payloads</subject><subject>Predictive models</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>response surface methodology (RSM)</subject><subject>Sequential analysis</subject><subject>Statistical analysis</subject><subject>system capability</subject><subject>Systems engineering</subject><subject>test and evaluation (T&amp;E)</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASiXOKn7F9LKXloUoc0kpwsux006Zqk2C7Ev33pA9x2tVqZmf0IXRP8IAQrJ8-8u98NqCYqAFVnEkqL1CPaCZTTRm_PO40VUTxa3QTwhpjoYTUPfQ1aTwUNsSqXib5PkTYJiPbWldtqrhP5uFwjytI8gJq66smfbYBFsn4twVfbaGOdpO-QKiWdTKDEJNh2_rGFqtbdFXaTYC78-yj-WQ8G72l08_X99FwmhaUZzEVWSaBSLCMCVU4LZi0gihWljTTSkkOWjqRWawYOMylloI758Bxbd1ClayPHk9_u9ifXdfArJudr7tIQ6nUijKZyU5FT6rCNyF4KE3btbd-bwg2B4LmSNAcCJozwc70cDJVAPBvUEwrzjH7AyKqbTM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, Ya Lun</creator><creator>Roberts, Blake</creator><creator>Grenn, Michael W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3227-9400</orcidid></search><sort><creationdate>20190901</creationdate><title>Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach</title><author>Li, Ya Lun ; Roberts, Blake ; Grenn, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5667e17ea3358cb9537a5183ff2698874e97b56a083eb0479754bbbeb49abd8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Boolean algebra</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Design of experiments</topic><topic>Design of experiments (DoE)</topic><topic>Flight tests</topic><topic>Model testing</topic><topic>Payloads</topic><topic>Predictive models</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>response surface methodology (RSM)</topic><topic>Sequential analysis</topic><topic>Statistical analysis</topic><topic>system capability</topic><topic>Systems engineering</topic><topic>test and evaluation (T&amp;E)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ya Lun</creatorcontrib><creatorcontrib>Roberts, Blake</creatorcontrib><creatorcontrib>Grenn, Michael W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ya Lun</au><au>Roberts, Blake</au><au>Grenn, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>13</volume><issue>3</issue><spage>2142</spage><epage>2153</epage><pages>2142-2153</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract><![CDATA[During the requirement-based test approach (RBT&E), it is difficult to objectively and quantitatively forecast system-of-interest (SOI) capabilities (or ability to achieve system requirements under its stated operational environment) through interpretations and/or analysis of obtained element verification data. This challenge remains because RBT&E verification data are collected under unique verification conditions and measurements specific to only the allocated element requirements (e.g., element A's demonstrated <inline-formula><tex-math notation="LaTeX">y_{1}</tex-math></inline-formula>-mi/h speed under <inline-formula><tex-math notation="LaTeX">x_{1}{^\circ \text{C}}</tex-math></inline-formula> verification condition versus element B's demonstrated payload of <inline-formula><tex-math notation="LaTeX">y_{2}</tex-math></inline-formula>-tons at <inline-formula><tex-math notation="LaTeX">x_{2}</tex-math></inline-formula>-m altitude). Such mismatched and conditional variables cannot be mathematically amalgamated to quantitatively forecast SOI capability. The proposed scenario-based experimental-design (SBED) test approach provides the ability to objectively and quantitatively forecast SOI capability and obtain matching element verification data (i.e., all normalized and standardized to a common input domain and a common unit). By applying design of experiments test methods and response surface methodology statistical techniques, the SBED test approach can model and output element verification data as "system-element capability" responses (or ability to fulfill element requirements) influenced by SOI operational-environment's parameters. It then forecasts the SOI capability (as depicted through sequencing of all elements' interactions) by a Boolean algebraic sum of all the (now matching) "system-element capability" response models. SBED introduces two systems engineering and test and evaluation (T&E) benefits. First, the early delivery of an objective and quantitative SOI capability forecast that has been previously unobtainable; second, more-descriptive element-capability regression models (with respect to the entire SOI operational environment vice just the requirement-specific condition per RBT&E) to assess and mitigate SOI design risks and uncertainties. To demonstrate these advantages, the authors apply SBED's data analysis techniques to an existing U.S. Air Force flight test's dataset and compare the SBED-produced quantitative SOI capability forecasts against the test's original qualitative conclusions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2018.2843727</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3227-9400</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2019-09, Vol.13 (3), p.2142-2153
issn 1932-8184
1937-9234
language eng
recordid cdi_ieee_primary_8398440
source IEEE Electronic Library (IEL)
subjects Adaptation models
Analytical models
Boolean algebra
Data analysis
Data models
Design of experiments
Design of experiments (DoE)
Flight tests
Model testing
Payloads
Predictive models
Regression analysis
Regression models
Response surface methodology
response surface methodology (RSM)
Sequential analysis
Statistical analysis
system capability
Systems engineering
test and evaluation (T&E)
title Forecasting System Capability Using the Scenario-Based Experimental-Design Test Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20System%20Capability%20Using%20the%20Scenario-Based%20Experimental-Design%20Test%20Approach&rft.jtitle=IEEE%20systems%20journal&rft.au=Li,%20Ya%20Lun&rft.date=2019-09-01&rft.volume=13&rft.issue=3&rft.spage=2142&rft.epage=2153&rft.pages=2142-2153&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2018.2843727&rft_dat=%3Cproquest_RIE%3E2279823767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2279823767&rft_id=info:pmid/&rft_ieee_id=8398440&rfr_iscdi=true