Ultrasound Localization Microscopy and Super-Resolution: A State of the Art
Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1320 |
---|---|
container_issue | 8 |
container_start_page | 1304 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 65 |
creator | Couture, Olivier Hingot, Vincent Heiles, Baptiste Muleki-Seya, Pauline Tanter, Mickael |
description | Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes. |
doi_str_mv | 10.1109/TUFFC.2018.2850811 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8396283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8396283</ieee_id><sourcerecordid>2068339238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</originalsourceid><addsrcrecordid>eNpdkU1P4zAQhi3EipbCH2ClVSQucEjx-COxuVUVhdV2tRKlZ8tJJ2pQWhc7QWJ__Tq09LCnkeZ9ZjT2Q8gV0DEA1Xcvy9lsOmYU1JgpSRXACRmCZDJVWspTMqRKyZRToANyHsIrpSCEZmdkwLTWIsv5kPxaNq23wXXbVTJ3pW3qv7at3Tb5XZfehdLtPhIbs0W3Q58-Y3BN1-f3ySRZtLbFxFVJu8Zk4tsL8q2yTcDLQx2R5ezhZfqUzv88_pxO5mkpctWmludMWbBcrjQtEDmiqFhVgKrynAMtrdBcsVIrkIUosyKzMhNFLihbgYCCj8jtfu_aNmbn6431H8bZ2jxN5qbvUcaF4KDeIbI3e3bn3VuHoTWbOpTYNHaLrguG0UxxrhlXEb3-D311nd_Gl0Qq1wA65zxSbE_13xM8VscLgJpei_nUYnot5qAlDv04rO6KDa6OI18eIvB9D9SIeIwV1xmL5_0D49iOmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079119733</pqid></control><display><type>article</type><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><source>IEEE Electronic Library (IEL)</source><creator>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</creator><creatorcontrib>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</creatorcontrib><description>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2850811</identifier><identifier>PMID: 29994673</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic microscopy ; Acoustics ; Angiography ; Arteriosclerosis ; Bioengineering ; Biotechnology ; Blood vessels ; Brain ; Contrast agents ; Diabetes mellitus ; Engineering Sciences ; Imaging ; Life Sciences ; Localization ; microbubbles ; Microscopy ; Optical diffraction ; Spatial resolution ; super-resolution ; Ultrasonic imaging ; ultrasound localization microscopy (ULM) ; Velocimetry ; Velocity measurement</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</citedby><cites>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</cites><orcidid>0000-0002-8683-1424 ; 0000-0003-2690-3171 ; 0000-0002-5525-8397 ; 0000-0001-7739-8051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8396283$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02344318$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Hingot, Vincent</creatorcontrib><creatorcontrib>Heiles, Baptiste</creatorcontrib><creatorcontrib>Muleki-Seya, Pauline</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</description><subject>Acoustic microscopy</subject><subject>Acoustics</subject><subject>Angiography</subject><subject>Arteriosclerosis</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Contrast agents</subject><subject>Diabetes mellitus</subject><subject>Engineering Sciences</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>microbubbles</subject><subject>Microscopy</subject><subject>Optical diffraction</subject><subject>Spatial resolution</subject><subject>super-resolution</subject><subject>Ultrasonic imaging</subject><subject>ultrasound localization microscopy (ULM)</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkU1P4zAQhi3EipbCH2ClVSQucEjx-COxuVUVhdV2tRKlZ8tJJ2pQWhc7QWJ__Tq09LCnkeZ9ZjT2Q8gV0DEA1Xcvy9lsOmYU1JgpSRXACRmCZDJVWspTMqRKyZRToANyHsIrpSCEZmdkwLTWIsv5kPxaNq23wXXbVTJ3pW3qv7at3Tb5XZfehdLtPhIbs0W3Q58-Y3BN1-f3ySRZtLbFxFVJu8Zk4tsL8q2yTcDLQx2R5ezhZfqUzv88_pxO5mkpctWmludMWbBcrjQtEDmiqFhVgKrynAMtrdBcsVIrkIUosyKzMhNFLihbgYCCj8jtfu_aNmbn6431H8bZ2jxN5qbvUcaF4KDeIbI3e3bn3VuHoTWbOpTYNHaLrguG0UxxrhlXEb3-D311nd_Gl0Qq1wA65zxSbE_13xM8VscLgJpei_nUYnot5qAlDv04rO6KDa6OI18eIvB9D9SIeIwV1xmL5_0D49iOmg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Couture, Olivier</creator><creator>Hingot, Vincent</creator><creator>Heiles, Baptiste</creator><creator>Muleki-Seya, Pauline</creator><creator>Tanter, Mickael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid><orcidid>https://orcid.org/0000-0003-2690-3171</orcidid><orcidid>https://orcid.org/0000-0002-5525-8397</orcidid><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid></search><sort><creationdate>20180801</creationdate><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><author>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic microscopy</topic><topic>Acoustics</topic><topic>Angiography</topic><topic>Arteriosclerosis</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Contrast agents</topic><topic>Diabetes mellitus</topic><topic>Engineering Sciences</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>microbubbles</topic><topic>Microscopy</topic><topic>Optical diffraction</topic><topic>Spatial resolution</topic><topic>super-resolution</topic><topic>Ultrasonic imaging</topic><topic>ultrasound localization microscopy (ULM)</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Hingot, Vincent</creatorcontrib><creatorcontrib>Heiles, Baptiste</creatorcontrib><creatorcontrib>Muleki-Seya, Pauline</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couture, Olivier</au><au>Hingot, Vincent</au><au>Heiles, Baptiste</au><au>Muleki-Seya, Pauline</au><au>Tanter, Mickael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>1304</spage><epage>1320</epage><pages>1304-1320</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994673</pmid><doi>10.1109/TUFFC.2018.2850811</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid><orcidid>https://orcid.org/0000-0003-2690-3171</orcidid><orcidid>https://orcid.org/0000-0002-5525-8397</orcidid><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_ieee_primary_8396283 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic microscopy Acoustics Angiography Arteriosclerosis Bioengineering Biotechnology Blood vessels Brain Contrast agents Diabetes mellitus Engineering Sciences Imaging Life Sciences Localization microbubbles Microscopy Optical diffraction Spatial resolution super-resolution Ultrasonic imaging ultrasound localization microscopy (ULM) Velocimetry Velocity measurement |
title | Ultrasound Localization Microscopy and Super-Resolution: A State of the Art |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20Localization%20Microscopy%20and%20Super-Resolution:%20A%20State%20of%20the%20Art&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Couture,%20Olivier&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=1304&rft.epage=1320&rft.pages=1304-1320&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2850811&rft_dat=%3Cproquest_ieee_%3E2068339238%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079119733&rft_id=info:pmid/29994673&rft_ieee_id=8396283&rfr_iscdi=true |