Ultrasound Localization Microscopy and Super-Resolution: A State of the Art

Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320
Hauptverfasser: Couture, Olivier, Hingot, Vincent, Heiles, Baptiste, Muleki-Seya, Pauline, Tanter, Mickael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 8
container_start_page 1304
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 65
creator Couture, Olivier
Hingot, Vincent
Heiles, Baptiste
Muleki-Seya, Pauline
Tanter, Mickael
description Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.
doi_str_mv 10.1109/TUFFC.2018.2850811
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8396283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8396283</ieee_id><sourcerecordid>2068339238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</originalsourceid><addsrcrecordid>eNpdkU1P4zAQhi3EipbCH2ClVSQucEjx-COxuVUVhdV2tRKlZ8tJJ2pQWhc7QWJ__Tq09LCnkeZ9ZjT2Q8gV0DEA1Xcvy9lsOmYU1JgpSRXACRmCZDJVWspTMqRKyZRToANyHsIrpSCEZmdkwLTWIsv5kPxaNq23wXXbVTJ3pW3qv7at3Tb5XZfehdLtPhIbs0W3Q58-Y3BN1-f3ySRZtLbFxFVJu8Zk4tsL8q2yTcDLQx2R5ezhZfqUzv88_pxO5mkpctWmludMWbBcrjQtEDmiqFhVgKrynAMtrdBcsVIrkIUosyKzMhNFLihbgYCCj8jtfu_aNmbn6431H8bZ2jxN5qbvUcaF4KDeIbI3e3bn3VuHoTWbOpTYNHaLrguG0UxxrhlXEb3-D311nd_Gl0Qq1wA65zxSbE_13xM8VscLgJpei_nUYnot5qAlDv04rO6KDa6OI18eIvB9D9SIeIwV1xmL5_0D49iOmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079119733</pqid></control><display><type>article</type><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><source>IEEE Electronic Library (IEL)</source><creator>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</creator><creatorcontrib>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</creatorcontrib><description>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2850811</identifier><identifier>PMID: 29994673</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustic microscopy ; Acoustics ; Angiography ; Arteriosclerosis ; Bioengineering ; Biotechnology ; Blood vessels ; Brain ; Contrast agents ; Diabetes mellitus ; Engineering Sciences ; Imaging ; Life Sciences ; Localization ; microbubbles ; Microscopy ; Optical diffraction ; Spatial resolution ; super-resolution ; Ultrasonic imaging ; ultrasound localization microscopy (ULM) ; Velocimetry ; Velocity measurement</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</citedby><cites>FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</cites><orcidid>0000-0002-8683-1424 ; 0000-0003-2690-3171 ; 0000-0002-5525-8397 ; 0000-0001-7739-8051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8396283$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02344318$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Hingot, Vincent</creatorcontrib><creatorcontrib>Heiles, Baptiste</creatorcontrib><creatorcontrib>Muleki-Seya, Pauline</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</description><subject>Acoustic microscopy</subject><subject>Acoustics</subject><subject>Angiography</subject><subject>Arteriosclerosis</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Blood vessels</subject><subject>Brain</subject><subject>Contrast agents</subject><subject>Diabetes mellitus</subject><subject>Engineering Sciences</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>microbubbles</subject><subject>Microscopy</subject><subject>Optical diffraction</subject><subject>Spatial resolution</subject><subject>super-resolution</subject><subject>Ultrasonic imaging</subject><subject>ultrasound localization microscopy (ULM)</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkU1P4zAQhi3EipbCH2ClVSQucEjx-COxuVUVhdV2tRKlZ8tJJ2pQWhc7QWJ__Tq09LCnkeZ9ZjT2Q8gV0DEA1Xcvy9lsOmYU1JgpSRXACRmCZDJVWspTMqRKyZRToANyHsIrpSCEZmdkwLTWIsv5kPxaNq23wXXbVTJ3pW3qv7at3Tb5XZfehdLtPhIbs0W3Q58-Y3BN1-f3ySRZtLbFxFVJu8Zk4tsL8q2yTcDLQx2R5ezhZfqUzv88_pxO5mkpctWmludMWbBcrjQtEDmiqFhVgKrynAMtrdBcsVIrkIUosyKzMhNFLihbgYCCj8jtfu_aNmbn6431H8bZ2jxN5qbvUcaF4KDeIbI3e3bn3VuHoTWbOpTYNHaLrguG0UxxrhlXEb3-D311nd_Gl0Qq1wA65zxSbE_13xM8VscLgJpei_nUYnot5qAlDv04rO6KDa6OI18eIvB9D9SIeIwV1xmL5_0D49iOmg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Couture, Olivier</creator><creator>Hingot, Vincent</creator><creator>Heiles, Baptiste</creator><creator>Muleki-Seya, Pauline</creator><creator>Tanter, Mickael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid><orcidid>https://orcid.org/0000-0003-2690-3171</orcidid><orcidid>https://orcid.org/0000-0002-5525-8397</orcidid><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid></search><sort><creationdate>20180801</creationdate><title>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</title><author>Couture, Olivier ; Hingot, Vincent ; Heiles, Baptiste ; Muleki-Seya, Pauline ; Tanter, Mickael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a3728a1a35d90bee3ee4f2fb18f77310ca49382c9815b4c6b6a564b7402d141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic microscopy</topic><topic>Acoustics</topic><topic>Angiography</topic><topic>Arteriosclerosis</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Blood vessels</topic><topic>Brain</topic><topic>Contrast agents</topic><topic>Diabetes mellitus</topic><topic>Engineering Sciences</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>microbubbles</topic><topic>Microscopy</topic><topic>Optical diffraction</topic><topic>Spatial resolution</topic><topic>super-resolution</topic><topic>Ultrasonic imaging</topic><topic>ultrasound localization microscopy (ULM)</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Hingot, Vincent</creatorcontrib><creatorcontrib>Heiles, Baptiste</creatorcontrib><creatorcontrib>Muleki-Seya, Pauline</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couture, Olivier</au><au>Hingot, Vincent</au><au>Heiles, Baptiste</au><au>Muleki-Seya, Pauline</au><au>Tanter, Mickael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound Localization Microscopy and Super-Resolution: A State of the Art</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>65</volume><issue>8</issue><spage>1304</spage><epage>1320</epage><pages>1304-1320</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994673</pmid><doi>10.1109/TUFFC.2018.2850811</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid><orcidid>https://orcid.org/0000-0003-2690-3171</orcidid><orcidid>https://orcid.org/0000-0002-5525-8397</orcidid><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-08, Vol.65 (8), p.1304-1320
issn 0885-3010
1525-8955
language eng
recordid cdi_ieee_primary_8396283
source IEEE Electronic Library (IEL)
subjects Acoustic microscopy
Acoustics
Angiography
Arteriosclerosis
Bioengineering
Biotechnology
Blood vessels
Brain
Contrast agents
Diabetes mellitus
Engineering Sciences
Imaging
Life Sciences
Localization
microbubbles
Microscopy
Optical diffraction
Spatial resolution
super-resolution
Ultrasonic imaging
ultrasound localization microscopy (ULM)
Velocimetry
Velocity measurement
title Ultrasound Localization Microscopy and Super-Resolution: A State of the Art
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20Localization%20Microscopy%20and%20Super-Resolution:%20A%20State%20of%20the%20Art&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Couture,%20Olivier&rft.date=2018-08-01&rft.volume=65&rft.issue=8&rft.spage=1304&rft.epage=1320&rft.pages=1304-1320&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2850811&rft_dat=%3Cproquest_ieee_%3E2068339238%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079119733&rft_id=info:pmid/29994673&rft_ieee_id=8396283&rfr_iscdi=true