On Data-Selective Adaptive Filtering

The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-08, Vol.66 (16), p.4239-4252
1. Verfasser: Diniz, Paulo S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4252
container_issue 16
container_start_page 4239
container_title IEEE transactions on signal processing
container_volume 66
creator Diniz, Paulo S. R.
description The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.
doi_str_mv 10.1109/TSP.2018.2847657
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8386704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8386704</ieee_id><sourcerecordid>10_1109_TSP_2018_2847657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</originalsourceid><addsrcrecordid>eNo9j0FLAzEUhIMoWKt3wUsPXrN9L9lskmOpVoVCC63gLSTZPFlZa8kugv_erS2eZgZmBj7GbhEKRLDT7WZdCEBTCFPqSukzNkJbIochnQ8elOTK6LdLdtV1HwBYlrYasfvVbvLge883qU2xb77TZFb7_Z9ZNG2fcrN7v2YX5Nsu3Zx0zF4Xj9v5M1-unl7msyWPopI9V0GQsBZMCB41KEVo0FoTpRBe-CBJEQVNXkEtMNREMVnwpDUJ1DHIMYPjb8xfXZcTuX1uPn3-cQjuQOkGSnegdCfKYXJ3nDQppf-6kabSUMpf4UlNdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Data-Selective Adaptive Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Diniz, Paulo S. R.</creator><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><description>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2847657</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive filters ; Adaptive signal processing ; Censorship ; Computational complexity ; Convergence ; data processing ; Estimation ; learning systems ; Measurement uncertainty ; Noise measurement ; parameter estimation ; Signal processing algorithms ; system identification</subject><ispartof>IEEE transactions on signal processing, 2018-08, Vol.66 (16), p.4239-4252</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</citedby><cites>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</cites><orcidid>0000-0002-1272-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8386704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8386704$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><title>On Data-Selective Adaptive Filtering</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</description><subject>adaptive filters</subject><subject>Adaptive signal processing</subject><subject>Censorship</subject><subject>Computational complexity</subject><subject>Convergence</subject><subject>data processing</subject><subject>Estimation</subject><subject>learning systems</subject><subject>Measurement uncertainty</subject><subject>Noise measurement</subject><subject>parameter estimation</subject><subject>Signal processing algorithms</subject><subject>system identification</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLAzEUhIMoWKt3wUsPXrN9L9lskmOpVoVCC63gLSTZPFlZa8kugv_erS2eZgZmBj7GbhEKRLDT7WZdCEBTCFPqSukzNkJbIochnQ8elOTK6LdLdtV1HwBYlrYasfvVbvLge883qU2xb77TZFb7_Z9ZNG2fcrN7v2YX5Nsu3Zx0zF4Xj9v5M1-unl7msyWPopI9V0GQsBZMCB41KEVo0FoTpRBe-CBJEQVNXkEtMNREMVnwpDUJ1DHIMYPjb8xfXZcTuX1uPn3-cQjuQOkGSnegdCfKYXJ3nDQppf-6kabSUMpf4UlNdQ</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Diniz, Paulo S. R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1272-7368</orcidid></search><sort><creationdate>20180815</creationdate><title>On Data-Selective Adaptive Filtering</title><author>Diniz, Paulo S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive filters</topic><topic>Adaptive signal processing</topic><topic>Censorship</topic><topic>Computational complexity</topic><topic>Convergence</topic><topic>data processing</topic><topic>Estimation</topic><topic>learning systems</topic><topic>Measurement uncertainty</topic><topic>Noise measurement</topic><topic>parameter estimation</topic><topic>Signal processing algorithms</topic><topic>system identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diniz, Paulo S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Data-Selective Adaptive Filtering</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-08-15</date><risdate>2018</risdate><volume>66</volume><issue>16</issue><spage>4239</spage><epage>4252</epage><pages>4239-4252</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2847657</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1272-7368</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-08, Vol.66 (16), p.4239-4252
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8386704
source IEEE Electronic Library (IEL)
subjects adaptive filters
Adaptive signal processing
Censorship
Computational complexity
Convergence
data processing
Estimation
learning systems
Measurement uncertainty
Noise measurement
parameter estimation
Signal processing algorithms
system identification
title On Data-Selective Adaptive Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Data-Selective%20Adaptive%20Filtering&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Diniz,%20Paulo%20S.%20R.&rft.date=2018-08-15&rft.volume=66&rft.issue=16&rft.spage=4239&rft.epage=4252&rft.pages=4239-4252&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2847657&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2018_2847657%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8386704&rfr_iscdi=true