On Data-Selective Adaptive Filtering
The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-08, Vol.66 (16), p.4239-4252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4252 |
---|---|
container_issue | 16 |
container_start_page | 4239 |
container_title | IEEE transactions on signal processing |
container_volume | 66 |
creator | Diniz, Paulo S. R. |
description | The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost. |
doi_str_mv | 10.1109/TSP.2018.2847657 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8386704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8386704</ieee_id><sourcerecordid>10_1109_TSP_2018_2847657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</originalsourceid><addsrcrecordid>eNo9j0FLAzEUhIMoWKt3wUsPXrN9L9lskmOpVoVCC63gLSTZPFlZa8kugv_erS2eZgZmBj7GbhEKRLDT7WZdCEBTCFPqSukzNkJbIochnQ8elOTK6LdLdtV1HwBYlrYasfvVbvLge883qU2xb77TZFb7_Z9ZNG2fcrN7v2YX5Nsu3Zx0zF4Xj9v5M1-unl7msyWPopI9V0GQsBZMCB41KEVo0FoTpRBe-CBJEQVNXkEtMNREMVnwpDUJ1DHIMYPjb8xfXZcTuX1uPn3-cQjuQOkGSnegdCfKYXJ3nDQppf-6kabSUMpf4UlNdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Data-Selective Adaptive Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Diniz, Paulo S. R.</creator><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><description>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2847657</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive filters ; Adaptive signal processing ; Censorship ; Computational complexity ; Convergence ; data processing ; Estimation ; learning systems ; Measurement uncertainty ; Noise measurement ; parameter estimation ; Signal processing algorithms ; system identification</subject><ispartof>IEEE transactions on signal processing, 2018-08, Vol.66 (16), p.4239-4252</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</citedby><cites>FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</cites><orcidid>0000-0002-1272-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8386704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8386704$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><title>On Data-Selective Adaptive Filtering</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</description><subject>adaptive filters</subject><subject>Adaptive signal processing</subject><subject>Censorship</subject><subject>Computational complexity</subject><subject>Convergence</subject><subject>data processing</subject><subject>Estimation</subject><subject>learning systems</subject><subject>Measurement uncertainty</subject><subject>Noise measurement</subject><subject>parameter estimation</subject><subject>Signal processing algorithms</subject><subject>system identification</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLAzEUhIMoWKt3wUsPXrN9L9lskmOpVoVCC63gLSTZPFlZa8kugv_erS2eZgZmBj7GbhEKRLDT7WZdCEBTCFPqSukzNkJbIochnQ8elOTK6LdLdtV1HwBYlrYasfvVbvLge883qU2xb77TZFb7_Z9ZNG2fcrN7v2YX5Nsu3Zx0zF4Xj9v5M1-unl7msyWPopI9V0GQsBZMCB41KEVo0FoTpRBe-CBJEQVNXkEtMNREMVnwpDUJ1DHIMYPjb8xfXZcTuX1uPn3-cQjuQOkGSnegdCfKYXJ3nDQppf-6kabSUMpf4UlNdQ</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Diniz, Paulo S. R.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1272-7368</orcidid></search><sort><creationdate>20180815</creationdate><title>On Data-Selective Adaptive Filtering</title><author>Diniz, Paulo S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-5b2f29908bba17055f181998c322a2ab3f5ffb7fa50d21bdffce90af77f217cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive filters</topic><topic>Adaptive signal processing</topic><topic>Censorship</topic><topic>Computational complexity</topic><topic>Convergence</topic><topic>data processing</topic><topic>Estimation</topic><topic>learning systems</topic><topic>Measurement uncertainty</topic><topic>Noise measurement</topic><topic>parameter estimation</topic><topic>Signal processing algorithms</topic><topic>system identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diniz, Paulo S. R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diniz, Paulo S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Data-Selective Adaptive Filtering</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-08-15</date><risdate>2018</risdate><volume>66</volume><issue>16</issue><spage>4239</spage><epage>4252</epage><pages>4239-4252</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The current trend of acquiring data pervasively calls for some data-selection strategy, particularly in the case a subset of the data does not bring enough innovation. In this paper, we present some extensions of the existing adaptive filtering algorithms enabling data selection, which also address the censorship of outliers measured through unexpected high estimation errors. The resulting algorithms allow the prescription of how often the acquired data are expected to be incorporated in the learning process based on some a priori assumptions regarding the environment data. A detailed derivation of how to implement the data selection in a computationally efficient way is provided along with the proper choice of the parameters inherent to the data-selective affine projection algorithms. Similar discussions lead to the proposal of the data-selective least mean square and data-selective recursive least squares algorithms. Simulation results show the effectiveness of the proposed algorithms for selecting the innovative data without sacrificing the estimation accuracy, while reducing the computational cost.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2847657</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1272-7368</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2018-08, Vol.66 (16), p.4239-4252 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_8386704 |
source | IEEE Electronic Library (IEL) |
subjects | adaptive filters Adaptive signal processing Censorship Computational complexity Convergence data processing Estimation learning systems Measurement uncertainty Noise measurement parameter estimation Signal processing algorithms system identification |
title | On Data-Selective Adaptive Filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Data-Selective%20Adaptive%20Filtering&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Diniz,%20Paulo%20S.%20R.&rft.date=2018-08-15&rft.volume=66&rft.issue=16&rft.spage=4239&rft.epage=4252&rft.pages=4239-4252&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2847657&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2018_2847657%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8386704&rfr_iscdi=true |