Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology
Life cycle cost containment of the strategic weapons system (SWS), without loss of ultra high performance, is a very important goal of the entire Navy Strategic Systems Program community. Boeing is responding by guiding large advances in the state-of-the art of fiber optic gyro technology and develo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | |
container_start_page | 404 |
container_title | |
container_volume | |
creator | Heckman, D.W. Baretela, L.M. |
description | Life cycle cost containment of the strategic weapons system (SWS), without loss of ultra high performance, is a very important goal of the entire Navy Strategic Systems Program community. Boeing is responding by guiding large advances in the state-of-the art of fiber optic gyro technology and developing a new associated navigation system. All of the very stringent strategic weapons system (SWS) performance, reliability, and maintainability requirements continue to be exceeded by the electrostatically supported gyro navigator (ESGN). The electrostatically supported gyro (ESG), in production for over 25 years, is the most critical and costly component of the current inertial navigation system. ESGs, however, are extremely expensive to manufacture and repair. Furthermore, the system-level electronic components are difficult to replace because they are rapidly becoming obsolete. The current initiative is focused on containing total ownership costs, especially maintenance costs, without any relaxation of performance, reliability, or maintainability requirements. The key element of this initiative is new gyro technology based on rapidly improving precision IFOG performance, along with cost reduction of fiber and manufacturing processes. This paper discusses the challenges and the approach currently being taken to further the development of high precision interferometric fiber optic gyro (IFOG) technology and its associated inertial navigation system for application to the SSBN. |
doi_str_mv | 10.1109/PLANS.2000.838332 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_838332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>838332</ieee_id><sourcerecordid>838332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1152-2b1dcdce17a9bfc659704bbb5048fd89543ace69a500fccaa64ad6f6e835531a3</originalsourceid><addsrcrecordid>eNotkN1KAzEQhQMiqLUPoFd5gdZks9mfy1L8KRQV1OsySSbbke1mya6FfQDf25R6MRzmfMzAOYzdSbGUUtQP79vV68cyE0IsK1UplV2wG1FWQumqzPIrNh-G7wSFFqXIy2v2uzn0MRzRcfA-RAeGWhonHjzfU7PnfURLA4WODz_mAJE65GniSNDyDo7UwHiiZkr2cPLTko4j9OTaiTs8Yht66hruyWDkoR_J8maKgY9o911oQzPdsksP7YDzf52xr6fHz_XLYvv2vFmvtgsrpc4WmZHOOouyhNp4W-g6hTDGaJFX3lW1zhVYLGrQQnhrAYocXOELrJTWSoKasfvzX0LEXR8pJZp256LUH3VbY1k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heckman, D.W. ; Baretela, L.M.</creator><creatorcontrib>Heckman, D.W. ; Baretela, L.M.</creatorcontrib><description>Life cycle cost containment of the strategic weapons system (SWS), without loss of ultra high performance, is a very important goal of the entire Navy Strategic Systems Program community. Boeing is responding by guiding large advances in the state-of-the art of fiber optic gyro technology and developing a new associated navigation system. All of the very stringent strategic weapons system (SWS) performance, reliability, and maintainability requirements continue to be exceeded by the electrostatically supported gyro navigator (ESGN). The electrostatically supported gyro (ESG), in production for over 25 years, is the most critical and costly component of the current inertial navigation system. ESGs, however, are extremely expensive to manufacture and repair. Furthermore, the system-level electronic components are difficult to replace because they are rapidly becoming obsolete. The current initiative is focused on containing total ownership costs, especially maintenance costs, without any relaxation of performance, reliability, or maintainability requirements. The key element of this initiative is new gyro technology based on rapidly improving precision IFOG performance, along with cost reduction of fiber and manufacturing processes. This paper discusses the challenges and the approach currently being taken to further the development of high precision interferometric fiber optic gyro (IFOG) technology and its associated inertial navigation system for application to the SSBN.</description><identifier>ISBN: 0780358724</identifier><identifier>ISBN: 9780780358720</identifier><identifier>DOI: 10.1109/PLANS.2000.838332</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Inertial navigation ; Maintenance ; Marine technology ; Optical fibers ; Optical losses ; Performance loss ; Underwater vehicles ; Weapons</subject><ispartof>IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062), 2000, p.404-410</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1152-2b1dcdce17a9bfc659704bbb5048fd89543ace69a500fccaa64ad6f6e835531a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/838332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/838332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heckman, D.W.</creatorcontrib><creatorcontrib>Baretela, L.M.</creatorcontrib><title>Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology</title><title>IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062)</title><addtitle>PLANS</addtitle><description>Life cycle cost containment of the strategic weapons system (SWS), without loss of ultra high performance, is a very important goal of the entire Navy Strategic Systems Program community. Boeing is responding by guiding large advances in the state-of-the art of fiber optic gyro technology and developing a new associated navigation system. All of the very stringent strategic weapons system (SWS) performance, reliability, and maintainability requirements continue to be exceeded by the electrostatically supported gyro navigator (ESGN). The electrostatically supported gyro (ESG), in production for over 25 years, is the most critical and costly component of the current inertial navigation system. ESGs, however, are extremely expensive to manufacture and repair. Furthermore, the system-level electronic components are difficult to replace because they are rapidly becoming obsolete. The current initiative is focused on containing total ownership costs, especially maintenance costs, without any relaxation of performance, reliability, or maintainability requirements. The key element of this initiative is new gyro technology based on rapidly improving precision IFOG performance, along with cost reduction of fiber and manufacturing processes. This paper discusses the challenges and the approach currently being taken to further the development of high precision interferometric fiber optic gyro (IFOG) technology and its associated inertial navigation system for application to the SSBN.</description><subject>Costs</subject><subject>Inertial navigation</subject><subject>Maintenance</subject><subject>Marine technology</subject><subject>Optical fibers</subject><subject>Optical losses</subject><subject>Performance loss</subject><subject>Underwater vehicles</subject><subject>Weapons</subject><isbn>0780358724</isbn><isbn>9780780358720</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KAzEQhQMiqLUPoFd5gdZks9mfy1L8KRQV1OsySSbbke1mya6FfQDf25R6MRzmfMzAOYzdSbGUUtQP79vV68cyE0IsK1UplV2wG1FWQumqzPIrNh-G7wSFFqXIy2v2uzn0MRzRcfA-RAeGWhonHjzfU7PnfURLA4WODz_mAJE65GniSNDyDo7UwHiiZkr2cPLTko4j9OTaiTs8Yht66hruyWDkoR_J8maKgY9o911oQzPdsksP7YDzf52xr6fHz_XLYvv2vFmvtgsrpc4WmZHOOouyhNp4W-g6hTDGaJFX3lW1zhVYLGrQQnhrAYocXOELrJTWSoKasfvzX0LEXR8pJZp256LUH3VbY1k</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Heckman, D.W.</creator><creator>Baretela, L.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology</title><author>Heckman, D.W. ; Baretela, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1152-2b1dcdce17a9bfc659704bbb5048fd89543ace69a500fccaa64ad6f6e835531a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Costs</topic><topic>Inertial navigation</topic><topic>Maintenance</topic><topic>Marine technology</topic><topic>Optical fibers</topic><topic>Optical losses</topic><topic>Performance loss</topic><topic>Underwater vehicles</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Heckman, D.W.</creatorcontrib><creatorcontrib>Baretela, L.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heckman, D.W.</au><au>Baretela, L.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology</atitle><btitle>IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062)</btitle><stitle>PLANS</stitle><date>2000</date><risdate>2000</risdate><spage>404</spage><epage>410</epage><pages>404-410</pages><isbn>0780358724</isbn><isbn>9780780358720</isbn><abstract>Life cycle cost containment of the strategic weapons system (SWS), without loss of ultra high performance, is a very important goal of the entire Navy Strategic Systems Program community. Boeing is responding by guiding large advances in the state-of-the art of fiber optic gyro technology and developing a new associated navigation system. All of the very stringent strategic weapons system (SWS) performance, reliability, and maintainability requirements continue to be exceeded by the electrostatically supported gyro navigator (ESGN). The electrostatically supported gyro (ESG), in production for over 25 years, is the most critical and costly component of the current inertial navigation system. ESGs, however, are extremely expensive to manufacture and repair. Furthermore, the system-level electronic components are difficult to replace because they are rapidly becoming obsolete. The current initiative is focused on containing total ownership costs, especially maintenance costs, without any relaxation of performance, reliability, or maintainability requirements. The key element of this initiative is new gyro technology based on rapidly improving precision IFOG performance, along with cost reduction of fiber and manufacturing processes. This paper discusses the challenges and the approach currently being taken to further the development of high precision interferometric fiber optic gyro (IFOG) technology and its associated inertial navigation system for application to the SSBN.</abstract><pub>IEEE</pub><doi>10.1109/PLANS.2000.838332</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780358724 |
ispartof | IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062), 2000, p.404-410 |
issn | |
language | eng |
recordid | cdi_ieee_primary_838332 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Costs Inertial navigation Maintenance Marine technology Optical fibers Optical losses Performance loss Underwater vehicles Weapons |
title | Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20affordability%20of%20high%20precision%20submarine%20inertial%20navigation%20by%20insertion%20of%20rapidly%20developing%20fiber%20optic%20gyro%20technology&rft.btitle=IEEE%202000.%20Position%20Location%20and%20Navigation%20Symposium%20(Cat.%20No.00CH37062)&rft.au=Heckman,%20D.W.&rft.date=2000&rft.spage=404&rft.epage=410&rft.pages=404-410&rft.isbn=0780358724&rft.isbn_list=9780780358720&rft_id=info:doi/10.1109/PLANS.2000.838332&rft_dat=%3Cieee_6IE%3E838332%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=838332&rfr_iscdi=true |