Design of a coldplate using Flow Network Modeling (FNM)

The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving mom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yeh, J.J., Short, B.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 80
container_title
container_volume
creator Yeh, J.J.
Short, B.E.
description The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.
doi_str_mv 10.1109/STHERM.2000.837065
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_837065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>837065</ieee_id><sourcerecordid>837065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-522ff8a6352811c70a8c42fca12f3b467ff09e1133c9148c56c9d65fb748ace83</originalsourceid><addsrcrecordid>eNotj81Kw0AYRQd_wFj7Al3NUheJ3zf_s5TaWKGpoFm4K9PJTInGpiSR4tsbqasL5x4uXEJmCBki2Pu3crl4LTIGAJnhGpQ8IwmTWqc4onNyDdoAlxbV-wVJcOxTxhhekWnff4wGCCm0NQnRj6Gvd3vaRuqob5vq0Lgh0O--3u9o3rRHug7Dse0-adFWofmjt_m6uLshl9E1fZj-54SU-aKcL9PVy9Pz_GGV1kYPqWQsRuMUl8wgeg3OeMGid8gi3wqlYwQbEDn3FoXxUnlbKRm3Whjng-ETMjvN1iGEzaGrv1z3szk95r_n70aK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of a coldplate using Flow Network Modeling (FNM)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yeh, J.J. ; Short, B.E.</creator><creatorcontrib>Yeh, J.J. ; Short, B.E.</creatorcontrib><description>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</description><identifier>ISSN: 1065-2221</identifier><identifier>ISBN: 078035916X</identifier><identifier>ISBN: 9780780359161</identifier><identifier>EISSN: 2577-1000</identifier><identifier>DOI: 10.1109/STHERM.2000.837065</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational fluid dynamics ; Electronics cooling ; Energy conservation ; Equations ; Fluid flow ; Laboratories ; Power system modeling ; Power system reliability ; Temperature distribution ; Testing</subject><ispartof>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068), 2000, p.80-85</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/837065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/837065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Short, B.E.</creatorcontrib><title>Design of a coldplate using Flow Network Modeling (FNM)</title><title>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068)</title><addtitle>STHERM</addtitle><description>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</description><subject>Computational fluid dynamics</subject><subject>Electronics cooling</subject><subject>Energy conservation</subject><subject>Equations</subject><subject>Fluid flow</subject><subject>Laboratories</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Temperature distribution</subject><subject>Testing</subject><issn>1065-2221</issn><issn>2577-1000</issn><isbn>078035916X</isbn><isbn>9780780359161</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AYRQd_wFj7Al3NUheJ3zf_s5TaWKGpoFm4K9PJTInGpiSR4tsbqasL5x4uXEJmCBki2Pu3crl4LTIGAJnhGpQ8IwmTWqc4onNyDdoAlxbV-wVJcOxTxhhekWnff4wGCCm0NQnRj6Gvd3vaRuqob5vq0Lgh0O--3u9o3rRHug7Dse0-adFWofmjt_m6uLshl9E1fZj-54SU-aKcL9PVy9Pz_GGV1kYPqWQsRuMUl8wgeg3OeMGid8gi3wqlYwQbEDn3FoXxUnlbKRm3Whjng-ETMjvN1iGEzaGrv1z3szk95r_n70aK</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Yeh, J.J.</creator><creator>Short, B.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Design of a coldplate using Flow Network Modeling (FNM)</title><author>Yeh, J.J. ; Short, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-522ff8a6352811c70a8c42fca12f3b467ff09e1133c9148c56c9d65fb748ace83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational fluid dynamics</topic><topic>Electronics cooling</topic><topic>Energy conservation</topic><topic>Equations</topic><topic>Fluid flow</topic><topic>Laboratories</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Temperature distribution</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Short, B.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeh, J.J.</au><au>Short, B.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of a coldplate using Flow Network Modeling (FNM)</atitle><btitle>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068)</btitle><stitle>STHERM</stitle><date>2000</date><risdate>2000</risdate><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>1065-2221</issn><eissn>2577-1000</eissn><isbn>078035916X</isbn><isbn>9780780359161</isbn><abstract>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</abstract><pub>IEEE</pub><doi>10.1109/STHERM.2000.837065</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1065-2221
ispartof Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068), 2000, p.80-85
issn 1065-2221
2577-1000
language eng
recordid cdi_ieee_primary_837065
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational fluid dynamics
Electronics cooling
Energy conservation
Equations
Fluid flow
Laboratories
Power system modeling
Power system reliability
Temperature distribution
Testing
title Design of a coldplate using Flow Network Modeling (FNM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20a%20coldplate%20using%20Flow%20Network%20Modeling%20(FNM)&rft.btitle=Sixteenth%20Annual%20IEEE%20Semiconductor%20Thermal%20Measurement%20and%20Management%20Symposium%20(Cat.%20No.00CH37068)&rft.au=Yeh,%20J.J.&rft.date=2000&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=1065-2221&rft.eissn=2577-1000&rft.isbn=078035916X&rft.isbn_list=9780780359161&rft_id=info:doi/10.1109/STHERM.2000.837065&rft_dat=%3Cieee_6IE%3E837065%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=837065&rfr_iscdi=true