Design of a coldplate using Flow Network Modeling (FNM)
The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving mom...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | |
container_start_page | 80 |
container_title | |
container_volume | |
creator | Yeh, J.J. Short, B.E. |
description | The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design. |
doi_str_mv | 10.1109/STHERM.2000.837065 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_837065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>837065</ieee_id><sourcerecordid>837065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-522ff8a6352811c70a8c42fca12f3b467ff09e1133c9148c56c9d65fb748ace83</originalsourceid><addsrcrecordid>eNotj81Kw0AYRQd_wFj7Al3NUheJ3zf_s5TaWKGpoFm4K9PJTInGpiSR4tsbqasL5x4uXEJmCBki2Pu3crl4LTIGAJnhGpQ8IwmTWqc4onNyDdoAlxbV-wVJcOxTxhhekWnff4wGCCm0NQnRj6Gvd3vaRuqob5vq0Lgh0O--3u9o3rRHug7Dse0-adFWofmjt_m6uLshl9E1fZj-54SU-aKcL9PVy9Pz_GGV1kYPqWQsRuMUl8wgeg3OeMGid8gi3wqlYwQbEDn3FoXxUnlbKRm3Whjng-ETMjvN1iGEzaGrv1z3szk95r_n70aK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of a coldplate using Flow Network Modeling (FNM)</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yeh, J.J. ; Short, B.E.</creator><creatorcontrib>Yeh, J.J. ; Short, B.E.</creatorcontrib><description>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</description><identifier>ISSN: 1065-2221</identifier><identifier>ISBN: 078035916X</identifier><identifier>ISBN: 9780780359161</identifier><identifier>EISSN: 2577-1000</identifier><identifier>DOI: 10.1109/STHERM.2000.837065</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational fluid dynamics ; Electronics cooling ; Energy conservation ; Equations ; Fluid flow ; Laboratories ; Power system modeling ; Power system reliability ; Temperature distribution ; Testing</subject><ispartof>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068), 2000, p.80-85</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/837065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/837065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Short, B.E.</creatorcontrib><title>Design of a coldplate using Flow Network Modeling (FNM)</title><title>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068)</title><addtitle>STHERM</addtitle><description>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</description><subject>Computational fluid dynamics</subject><subject>Electronics cooling</subject><subject>Energy conservation</subject><subject>Equations</subject><subject>Fluid flow</subject><subject>Laboratories</subject><subject>Power system modeling</subject><subject>Power system reliability</subject><subject>Temperature distribution</subject><subject>Testing</subject><issn>1065-2221</issn><issn>2577-1000</issn><isbn>078035916X</isbn><isbn>9780780359161</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AYRQd_wFj7Al3NUheJ3zf_s5TaWKGpoFm4K9PJTInGpiSR4tsbqasL5x4uXEJmCBki2Pu3crl4LTIGAJnhGpQ8IwmTWqc4onNyDdoAlxbV-wVJcOxTxhhekWnff4wGCCm0NQnRj6Gvd3vaRuqob5vq0Lgh0O--3u9o3rRHug7Dse0-adFWofmjt_m6uLshl9E1fZj-54SU-aKcL9PVy9Pz_GGV1kYPqWQsRuMUl8wgeg3OeMGid8gi3wqlYwQbEDn3FoXxUnlbKRm3Whjng-ETMjvN1iGEzaGrv1z3szk95r_n70aK</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Yeh, J.J.</creator><creator>Short, B.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Design of a coldplate using Flow Network Modeling (FNM)</title><author>Yeh, J.J. ; Short, B.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-522ff8a6352811c70a8c42fca12f3b467ff09e1133c9148c56c9d65fb748ace83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational fluid dynamics</topic><topic>Electronics cooling</topic><topic>Energy conservation</topic><topic>Equations</topic><topic>Fluid flow</topic><topic>Laboratories</topic><topic>Power system modeling</topic><topic>Power system reliability</topic><topic>Temperature distribution</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yeh, J.J.</creatorcontrib><creatorcontrib>Short, B.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yeh, J.J.</au><au>Short, B.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of a coldplate using Flow Network Modeling (FNM)</atitle><btitle>Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068)</btitle><stitle>STHERM</stitle><date>2000</date><risdate>2000</risdate><spage>80</spage><epage>85</epage><pages>80-85</pages><issn>1065-2221</issn><eissn>2577-1000</eissn><isbn>078035916X</isbn><isbn>9780780359161</isbn><abstract>The present study describes the technique of Flow Network Modeling (FNM) and its application for the design of a coldplate. The technique of FNM involves representation of the overall flow system as a network of flow paths and flow components. It employs overall component characteristics solving momentum, mass, and energy conservation equations to predict system-wide fluid flow and temperature distributions. In addition, the use of empirical data and correlations for the flow component characteristics ensures good accuracy of the results. Experimental data from exit flow velocities show that the results from FNM are within approximately 20% of laboratory tests. Unlike other modeling techniques, the amount of time and effort required to create models and solve the problems is relatively low. Simplicity and ease-of-use make the FNM attractive in solving complicated flow systems. This ability to rapidly create and evaluate designs early in the design stage enables the quick development of a good system design.</abstract><pub>IEEE</pub><doi>10.1109/STHERM.2000.837065</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1065-2221 |
ispartof | Sixteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.00CH37068), 2000, p.80-85 |
issn | 1065-2221 2577-1000 |
language | eng |
recordid | cdi_ieee_primary_837065 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational fluid dynamics Electronics cooling Energy conservation Equations Fluid flow Laboratories Power system modeling Power system reliability Temperature distribution Testing |
title | Design of a coldplate using Flow Network Modeling (FNM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20a%20coldplate%20using%20Flow%20Network%20Modeling%20(FNM)&rft.btitle=Sixteenth%20Annual%20IEEE%20Semiconductor%20Thermal%20Measurement%20and%20Management%20Symposium%20(Cat.%20No.00CH37068)&rft.au=Yeh,%20J.J.&rft.date=2000&rft.spage=80&rft.epage=85&rft.pages=80-85&rft.issn=1065-2221&rft.eissn=2577-1000&rft.isbn=078035916X&rft.isbn_list=9780780359161&rft_id=info:doi/10.1109/STHERM.2000.837065&rft_dat=%3Cieee_6IE%3E837065%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=837065&rfr_iscdi=true |