The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C

Fluxgate magnetometers are widely used in many places for the measurement of weak magnetic field, but are sensitive to variations in sensor temperature. Therefore, their stabilization against temperature is required especially for outdoor applications. In this paper, temperature dependencies of flux...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2018-07, Vol.54 (7), p.1-6
Hauptverfasser: Can, Hava, Ecevit, Fevzi Necati, Svec, Peter, Topal, Ugur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 7
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 54
creator Can, Hava
Ecevit, Fevzi Necati
Svec, Peter
Svec, Peter
Topal, Ugur
description Fluxgate magnetometers are widely used in many places for the measurement of weak magnetic field, but are sensitive to variations in sensor temperature. Therefore, their stabilization against temperature is required especially for outdoor applications. In this paper, temperature dependencies of fluxgate sensors using four cobalt-based cores, two homemade, and two commercially obtained were analyzed at temperature interval of −50 °C to +85 °C in the climatic chamber. In addition to differences seen on the temperature dependence of the studied cores, the most stable one was the sensor using Co 65 Fe 6 Cr 7 Si 8 B 14 core. Although the variation of the scale factor in the 135 °C temperature range was 17% in magnitude, it was decreased to 6% with a serial resistor connected to the pick-up coil, where the sensor signal is induced by measured dc field. By specifying the scale factor versus temperature dependence curves, we could decrease the error coming from temperature variations to less than 2%. Experimental results reveal that the sensors cored with Vitrovac6025 and Metglas2714A ribbons can also be preferred when they are evaluated in terms of both temperature dependence and noise levels.
doi_str_mv 10.1109/TMAG.2018.2835771
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8369371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8369371</ieee_id><sourcerecordid>2174488077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cdaf78df3f87c561f7e2f4170031e8191ecbc6d85eb264b0a8b9ce38d738a3ea3</originalsourceid><addsrcrecordid>eNo9kN9KwzAUxoMoOKcPIN4EvJTOpEmb9HIUNwcTQet1SdOTrWNrZ9KKvoHXPonP4KP4JKZ0eHX-fN_vHPgQuqRkQilJbrOH6XwSEionoWSREPQIjWjCaUBInByjEfFSkPCYn6Iz5zZ-5BElI1Rla8DPULuqXuF0razSLdjKtZV2uDH4ye-DtLGAZ9vufaXawd1Yh1WLM9jtwaq28_qi9uCb2vbU7-dXRPDPd4rbBt_IqG_P0YlRWwcXhzpGL7O7LL0Plo_zRTpdBjpMWBvoUhkhS8OMFDqKqREQGk4FIYyCpAkFXei4lBEUYcwLomSRaGCyFEwqBoqN0fVwd2-b1w5cm2-aztb-ZR5SwbmURAjvooNL28Y5Cybf22qn7EdOSd4nmveJ5n2i-SFRz1wNTAUA_37J4oR59Q8xgnNx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174488077</pqid></control><display><type>article</type><title>The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C</title><source>IEEE Electronic Library (IEL)</source><creator>Can, Hava ; Ecevit, Fevzi Necati ; Svec, Peter ; Svec, Peter ; Topal, Ugur</creator><creatorcontrib>Can, Hava ; Ecevit, Fevzi Necati ; Svec, Peter ; Svec, Peter ; Topal, Ugur</creatorcontrib><description>Fluxgate magnetometers are widely used in many places for the measurement of weak magnetic field, but are sensitive to variations in sensor temperature. Therefore, their stabilization against temperature is required especially for outdoor applications. In this paper, temperature dependencies of fluxgate sensors using four cobalt-based cores, two homemade, and two commercially obtained were analyzed at temperature interval of −50 °C to +85 °C in the climatic chamber. In addition to differences seen on the temperature dependence of the studied cores, the most stable one was the sensor using Co 65 Fe 6 Cr 7 Si 8 B 14 core. Although the variation of the scale factor in the 135 °C temperature range was 17% in magnitude, it was decreased to 6% with a serial resistor connected to the pick-up coil, where the sensor signal is induced by measured dc field. By specifying the scale factor versus temperature dependence curves, we could decrease the error coming from temperature variations to less than 2%. Experimental results reveal that the sensors cored with Vitrovac6025 and Metglas2714A ribbons can also be preferred when they are evaluated in terms of both temperature dependence and noise levels.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2018.2835771</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous metallic core ; Coils ; fluxgate magnetometer (FGM) ; Fluxgate magnetometers ; Magnetic cores ; Magnetic sensors ; Magnetism ; Magnetometers ; Noise levels ; Sensors ; Temperature ; Temperature dependence ; Temperature measurement ; Temperature sensors ; Test chambers</subject><ispartof>IEEE transactions on magnetics, 2018-07, Vol.54 (7), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cdaf78df3f87c561f7e2f4170031e8191ecbc6d85eb264b0a8b9ce38d738a3ea3</citedby><cites>FETCH-LOGICAL-c293t-cdaf78df3f87c561f7e2f4170031e8191ecbc6d85eb264b0a8b9ce38d738a3ea3</cites><orcidid>0000-0002-3238-9554</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8369371$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8369371$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Can, Hava</creatorcontrib><creatorcontrib>Ecevit, Fevzi Necati</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Topal, Ugur</creatorcontrib><title>The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Fluxgate magnetometers are widely used in many places for the measurement of weak magnetic field, but are sensitive to variations in sensor temperature. Therefore, their stabilization against temperature is required especially for outdoor applications. In this paper, temperature dependencies of fluxgate sensors using four cobalt-based cores, two homemade, and two commercially obtained were analyzed at temperature interval of −50 °C to +85 °C in the climatic chamber. In addition to differences seen on the temperature dependence of the studied cores, the most stable one was the sensor using Co 65 Fe 6 Cr 7 Si 8 B 14 core. Although the variation of the scale factor in the 135 °C temperature range was 17% in magnitude, it was decreased to 6% with a serial resistor connected to the pick-up coil, where the sensor signal is induced by measured dc field. By specifying the scale factor versus temperature dependence curves, we could decrease the error coming from temperature variations to less than 2%. Experimental results reveal that the sensors cored with Vitrovac6025 and Metglas2714A ribbons can also be preferred when they are evaluated in terms of both temperature dependence and noise levels.</description><subject>Amorphous metallic core</subject><subject>Coils</subject><subject>fluxgate magnetometer (FGM)</subject><subject>Fluxgate magnetometers</subject><subject>Magnetic cores</subject><subject>Magnetic sensors</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Noise levels</subject><subject>Sensors</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Test chambers</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9KwzAUxoMoOKcPIN4EvJTOpEmb9HIUNwcTQet1SdOTrWNrZ9KKvoHXPonP4KP4JKZ0eHX-fN_vHPgQuqRkQilJbrOH6XwSEionoWSREPQIjWjCaUBInByjEfFSkPCYn6Iz5zZ-5BElI1Rla8DPULuqXuF0razSLdjKtZV2uDH4ye-DtLGAZ9vufaXawd1Yh1WLM9jtwaq28_qi9uCb2vbU7-dXRPDPd4rbBt_IqG_P0YlRWwcXhzpGL7O7LL0Plo_zRTpdBjpMWBvoUhkhS8OMFDqKqREQGk4FIYyCpAkFXei4lBEUYcwLomSRaGCyFEwqBoqN0fVwd2-b1w5cm2-aztb-ZR5SwbmURAjvooNL28Y5Cybf22qn7EdOSd4nmveJ5n2i-SFRz1wNTAUA_37J4oR59Q8xgnNx</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Can, Hava</creator><creator>Ecevit, Fevzi Necati</creator><creator>Svec, Peter</creator><creator>Svec, Peter</creator><creator>Topal, Ugur</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3238-9554</orcidid></search><sort><creationdate>20180701</creationdate><title>The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C</title><author>Can, Hava ; Ecevit, Fevzi Necati ; Svec, Peter ; Svec, Peter ; Topal, Ugur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cdaf78df3f87c561f7e2f4170031e8191ecbc6d85eb264b0a8b9ce38d738a3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphous metallic core</topic><topic>Coils</topic><topic>fluxgate magnetometer (FGM)</topic><topic>Fluxgate magnetometers</topic><topic>Magnetic cores</topic><topic>Magnetic sensors</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Noise levels</topic><topic>Sensors</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Test chambers</topic><toplevel>online_resources</toplevel><creatorcontrib>Can, Hava</creatorcontrib><creatorcontrib>Ecevit, Fevzi Necati</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Topal, Ugur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Can, Hava</au><au>Ecevit, Fevzi Necati</au><au>Svec, Peter</au><au>Svec, Peter</au><au>Topal, Ugur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>54</volume><issue>7</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Fluxgate magnetometers are widely used in many places for the measurement of weak magnetic field, but are sensitive to variations in sensor temperature. Therefore, their stabilization against temperature is required especially for outdoor applications. In this paper, temperature dependencies of fluxgate sensors using four cobalt-based cores, two homemade, and two commercially obtained were analyzed at temperature interval of −50 °C to +85 °C in the climatic chamber. In addition to differences seen on the temperature dependence of the studied cores, the most stable one was the sensor using Co 65 Fe 6 Cr 7 Si 8 B 14 core. Although the variation of the scale factor in the 135 °C temperature range was 17% in magnitude, it was decreased to 6% with a serial resistor connected to the pick-up coil, where the sensor signal is induced by measured dc field. By specifying the scale factor versus temperature dependence curves, we could decrease the error coming from temperature variations to less than 2%. Experimental results reveal that the sensors cored with Vitrovac6025 and Metglas2714A ribbons can also be preferred when they are evaluated in terms of both temperature dependence and noise levels.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2018.2835771</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3238-9554</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2018-07, Vol.54 (7), p.1-6
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_8369371
source IEEE Electronic Library (IEL)
subjects Amorphous metallic core
Coils
fluxgate magnetometer (FGM)
Fluxgate magnetometers
Magnetic cores
Magnetic sensors
Magnetism
Magnetometers
Noise levels
Sensors
Temperature
Temperature dependence
Temperature measurement
Temperature sensors
Test chambers
title The Sensing Characteristics of Ring-Core Fluxgate Sensors at Temperature Interval of −50 °C to +85 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Sensing%20Characteristics%20of%20Ring-Core%20Fluxgate%20Sensors%20at%20Temperature%20Interval%20of%20%E2%88%9250%20%C2%B0C%20to%20+85%20%C2%B0C&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Can,%20Hava&rft.date=2018-07-01&rft.volume=54&rft.issue=7&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2018.2835771&rft_dat=%3Cproquest_RIE%3E2174488077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174488077&rft_id=info:pmid/&rft_ieee_id=8369371&rfr_iscdi=true