Residual LSTM Attention Network for Object Tracking

In this letter, we propose an attention network for object tracking. To construct the proposed attention network for sequential data, we combine long-short term memory (LSTM) and a residual framework into a residual LSTM (RLSTM). The LSTM, which learns temporal correlation, is used for a temporal le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2018-07, Vol.25 (7), p.1029-1033
Hauptverfasser: Kim, Hong-In, Park, Rae-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1033
container_issue 7
container_start_page 1029
container_title IEEE signal processing letters
container_volume 25
creator Kim, Hong-In
Park, Rae-Hong
description In this letter, we propose an attention network for object tracking. To construct the proposed attention network for sequential data, we combine long-short term memory (LSTM) and a residual framework into a residual LSTM (RLSTM). The LSTM, which learns temporal correlation, is used for a temporal learning of object tracking. In the proposed RLSTM method, the residual framework, which achieves the highest accuracy in ImageNet large scale visual recognition competition (ILSVRC) 2016, learns the variations of spatial inputs and thus achieves the spatio-temporal attention of the target object. Also, a rule-based RLSTM learning is used for robust attention. Experimental results on large tracking benchmark datasets object tracking benchmark (OTB)-2013, OTB-100, and OTB-50 show that the proposed RLSTM tracker achieves the highest performance among existing trackers including the Siamese trackers, attention trackers, and correlation trackers, and also has comparable performance with the state-of-the-art deep trackers.
doi_str_mv 10.1109/LSP.2018.2835768
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8357947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8357947</ieee_id><sourcerecordid>10_1109_LSP_2018_2835768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-1536dfc6438fa892595525d66b37e3243032730b7591ebdfff0b9dea24765b73</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhQdRsFb3gpv8gdQ7czOvZSlqhWjFZh_yuCNpayIzI-K_N6HF1TlwHvAxdsthwTnY-3z7thDAzUIYlFqZMzbjUppUoOLnowcNqbVgLtlVCDsAMNzIGcN3Cl37XR2SfFu8JMsYqY_d0CevFH8Gv0_c4JNNvaMmJoWvmn3Xf1yzC1cdAt2cdM6Kx4ditU7zzdPzapmnDXKIKZeoWteoDI2rjBXSSilkq1SNmlBkCCg0Qq2l5VS3zjmobUuVyLSStcY5g-Nt44cQPLnyy3eflf8tOZQTczkylxNzeWIeJ3fHSUdE__UptJnGP3AMUR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Residual LSTM Attention Network for Object Tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Hong-In ; Park, Rae-Hong</creator><creatorcontrib>Kim, Hong-In ; Park, Rae-Hong</creatorcontrib><description>In this letter, we propose an attention network for object tracking. To construct the proposed attention network for sequential data, we combine long-short term memory (LSTM) and a residual framework into a residual LSTM (RLSTM). The LSTM, which learns temporal correlation, is used for a temporal learning of object tracking. In the proposed RLSTM method, the residual framework, which achieves the highest accuracy in ImageNet large scale visual recognition competition (ILSVRC) 2016, learns the variations of spatial inputs and thus achieves the spatio-temporal attention of the target object. Also, a rule-based RLSTM learning is used for robust attention. Experimental results on large tracking benchmark datasets object tracking benchmark (OTB)-2013, OTB-100, and OTB-50 show that the proposed RLSTM tracker achieves the highest performance among existing trackers including the Siamese trackers, attention trackers, and correlation trackers, and also has comparable performance with the state-of-the-art deep trackers.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2018.2835768</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Attention network ; attention tracker ; Correlation ; deep tracker ; Feature extraction ; Object tracking ; residual long–short term memory (RLSTM) ; Robustness ; Siamese network ; spatio-temporal attention ; Target tracking ; Task analysis ; visual tracking</subject><ispartof>IEEE signal processing letters, 2018-07, Vol.25 (7), p.1029-1033</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-1536dfc6438fa892595525d66b37e3243032730b7591ebdfff0b9dea24765b73</citedby><cites>FETCH-LOGICAL-c310t-1536dfc6438fa892595525d66b37e3243032730b7591ebdfff0b9dea24765b73</cites><orcidid>0000-0002-4792-2980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8357947$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8357947$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Hong-In</creatorcontrib><creatorcontrib>Park, Rae-Hong</creatorcontrib><title>Residual LSTM Attention Network for Object Tracking</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>In this letter, we propose an attention network for object tracking. To construct the proposed attention network for sequential data, we combine long-short term memory (LSTM) and a residual framework into a residual LSTM (RLSTM). The LSTM, which learns temporal correlation, is used for a temporal learning of object tracking. In the proposed RLSTM method, the residual framework, which achieves the highest accuracy in ImageNet large scale visual recognition competition (ILSVRC) 2016, learns the variations of spatial inputs and thus achieves the spatio-temporal attention of the target object. Also, a rule-based RLSTM learning is used for robust attention. Experimental results on large tracking benchmark datasets object tracking benchmark (OTB)-2013, OTB-100, and OTB-50 show that the proposed RLSTM tracker achieves the highest performance among existing trackers including the Siamese trackers, attention trackers, and correlation trackers, and also has comparable performance with the state-of-the-art deep trackers.</description><subject>Adaptation models</subject><subject>Attention network</subject><subject>attention tracker</subject><subject>Correlation</subject><subject>deep tracker</subject><subject>Feature extraction</subject><subject>Object tracking</subject><subject>residual long–short term memory (RLSTM)</subject><subject>Robustness</subject><subject>Siamese network</subject><subject>spatio-temporal attention</subject><subject>Target tracking</subject><subject>Task analysis</subject><subject>visual tracking</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AUhQdRsFb3gpv8gdQ7czOvZSlqhWjFZh_yuCNpayIzI-K_N6HF1TlwHvAxdsthwTnY-3z7thDAzUIYlFqZMzbjUppUoOLnowcNqbVgLtlVCDsAMNzIGcN3Cl37XR2SfFu8JMsYqY_d0CevFH8Gv0_c4JNNvaMmJoWvmn3Xf1yzC1cdAt2cdM6Kx4ditU7zzdPzapmnDXKIKZeoWteoDI2rjBXSSilkq1SNmlBkCCg0Qq2l5VS3zjmobUuVyLSStcY5g-Nt44cQPLnyy3eflf8tOZQTczkylxNzeWIeJ3fHSUdE__UptJnGP3AMUR8</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Kim, Hong-In</creator><creator>Park, Rae-Hong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4792-2980</orcidid></search><sort><creationdate>201807</creationdate><title>Residual LSTM Attention Network for Object Tracking</title><author>Kim, Hong-In ; Park, Rae-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-1536dfc6438fa892595525d66b37e3243032730b7591ebdfff0b9dea24765b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation models</topic><topic>Attention network</topic><topic>attention tracker</topic><topic>Correlation</topic><topic>deep tracker</topic><topic>Feature extraction</topic><topic>Object tracking</topic><topic>residual long–short term memory (RLSTM)</topic><topic>Robustness</topic><topic>Siamese network</topic><topic>spatio-temporal attention</topic><topic>Target tracking</topic><topic>Task analysis</topic><topic>visual tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hong-In</creatorcontrib><creatorcontrib>Park, Rae-Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Hong-In</au><au>Park, Rae-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual LSTM Attention Network for Object Tracking</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2018-07</date><risdate>2018</risdate><volume>25</volume><issue>7</issue><spage>1029</spage><epage>1033</epage><pages>1029-1033</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>In this letter, we propose an attention network for object tracking. To construct the proposed attention network for sequential data, we combine long-short term memory (LSTM) and a residual framework into a residual LSTM (RLSTM). The LSTM, which learns temporal correlation, is used for a temporal learning of object tracking. In the proposed RLSTM method, the residual framework, which achieves the highest accuracy in ImageNet large scale visual recognition competition (ILSVRC) 2016, learns the variations of spatial inputs and thus achieves the spatio-temporal attention of the target object. Also, a rule-based RLSTM learning is used for robust attention. Experimental results on large tracking benchmark datasets object tracking benchmark (OTB)-2013, OTB-100, and OTB-50 show that the proposed RLSTM tracker achieves the highest performance among existing trackers including the Siamese trackers, attention trackers, and correlation trackers, and also has comparable performance with the state-of-the-art deep trackers.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2018.2835768</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4792-2980</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2018-07, Vol.25 (7), p.1029-1033
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_8357947
source IEEE Electronic Library (IEL)
subjects Adaptation models
Attention network
attention tracker
Correlation
deep tracker
Feature extraction
Object tracking
residual long–short term memory (RLSTM)
Robustness
Siamese network
spatio-temporal attention
Target tracking
Task analysis
visual tracking
title Residual LSTM Attention Network for Object Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20LSTM%20Attention%20Network%20for%20Object%20Tracking&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Kim,%20Hong-In&rft.date=2018-07&rft.volume=25&rft.issue=7&rft.spage=1029&rft.epage=1033&rft.pages=1029-1033&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2018.2835768&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2018_2835768%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8357947&rfr_iscdi=true