Instance-based Domain Adaptation via Multiclustering Logistic Approximation

With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2018-01, Vol.33 (1), p.78-88
Hauptverfasser: Xu, Feng, Yu, Jianfei, Xia, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 78
container_title IEEE intelligent systems
container_volume 33
creator Xu, Feng
Yu, Jianfei
Xia, Rui
description With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.
doi_str_mv 10.1109/MIS.2018.012001555
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8355888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8355888</ieee_id><sourcerecordid>2037356425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFa8eJfawKhYpWHICztXGcylWbhNhB8Pe4LeppR6s3O6sh5BboBICqh9XifcIoyAkFRikIIc7ICFQGKTCVnUct9jov2CW58n5DKeMRH5HXReMDNsamJXpbJY_tDl2TTCvsAgbXNsm3w2Q1bIMz28EH27tmnSzbtfNxk0y7rm9_3O6AXpOLGrfe3vzPMfmcP33MXtLl2_NiNl2mhikRUqTSFMIKDrlUGc1rakpjywxMlZeiQqyLSkDJaiuNsRKxqFEyhVBKpSwTfEzuj3dj9tdgfdCbduibGKkZ5QUXeXag2JEyfet9b2vd9fHR_lcD1fvSdCxN70vTp9Ki6e5octbak0FyIaSU_A9lxWmD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037356425</pqid></control><display><type>article</type><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xu, Feng ; Yu, Jianfei ; Xia, Rui</creator><creatorcontrib>Xu, Feng ; Yu, Jianfei ; Xia, Rui</creatorcontrib><description>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2018.012001555</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation ; Adaptation models ; Affective Computing ; Approximation ; Artificial intelligence ; Biological system modeling ; Clustering ; Data mining ; Feature extraction ; instance adaptation ; Internet/Web technologies ; Logistics ; Machine learning ; Mathematical analysis ; multiclustering logistic approximation ; multidistributional training data ; Portable computers ; Sentiment analysis ; Statistical models ; Training ; Training data</subject><ispartof>IEEE intelligent systems, 2018-01, Vol.33 (1), p.78-88</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</citedby><cites>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8355888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8355888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yu, Jianfei</creatorcontrib><creatorcontrib>Xia, Rui</creatorcontrib><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Affective Computing</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Biological system modeling</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>instance adaptation</subject><subject>Internet/Web technologies</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>multiclustering logistic approximation</subject><subject>multidistributional training data</subject><subject>Portable computers</subject><subject>Sentiment analysis</subject><subject>Statistical models</subject><subject>Training</subject><subject>Training data</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFa8eJfawKhYpWHICztXGcylWbhNhB8Pe4LeppR6s3O6sh5BboBICqh9XifcIoyAkFRikIIc7ICFQGKTCVnUct9jov2CW58n5DKeMRH5HXReMDNsamJXpbJY_tDl2TTCvsAgbXNsm3w2Q1bIMz28EH27tmnSzbtfNxk0y7rm9_3O6AXpOLGrfe3vzPMfmcP33MXtLl2_NiNl2mhikRUqTSFMIKDrlUGc1rakpjywxMlZeiQqyLSkDJaiuNsRKxqFEyhVBKpSwTfEzuj3dj9tdgfdCbduibGKkZ5QUXeXag2JEyfet9b2vd9fHR_lcD1fvSdCxN70vTp9Ki6e5octbak0FyIaSU_A9lxWmD</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Xu, Feng</creator><creator>Yu, Jianfei</creator><creator>Xia, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><author>Xu, Feng ; Yu, Jianfei ; Xia, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Affective Computing</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Biological system modeling</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>instance adaptation</topic><topic>Internet/Web technologies</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>multiclustering logistic approximation</topic><topic>multidistributional training data</topic><topic>Portable computers</topic><topic>Sentiment analysis</topic><topic>Statistical models</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yu, Jianfei</creatorcontrib><creatorcontrib>Xia, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Feng</au><au>Yu, Jianfei</au><au>Xia, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2018-01</date><risdate>2018</risdate><volume>33</volume><issue>1</issue><spage>78</spage><epage>88</epage><pages>78-88</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2018.012001555</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2018-01, Vol.33 (1), p.78-88
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_8355888
source IEEE/IET Electronic Library (IEL)
subjects Adaptation
Adaptation models
Affective Computing
Approximation
Artificial intelligence
Biological system modeling
Clustering
Data mining
Feature extraction
instance adaptation
Internet/Web technologies
Logistics
Machine learning
Mathematical analysis
multiclustering logistic approximation
multidistributional training data
Portable computers
Sentiment analysis
Statistical models
Training
Training data
title Instance-based Domain Adaptation via Multiclustering Logistic Approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance-based%20Domain%20Adaptation%20via%20Multiclustering%20Logistic%20Approximation&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Xu,%20Feng&rft.date=2018-01&rft.volume=33&rft.issue=1&rft.spage=78&rft.epage=88&rft.pages=78-88&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2018.012001555&rft_dat=%3Cproquest_RIE%3E2037356425%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037356425&rft_id=info:pmid/&rft_ieee_id=8355888&rfr_iscdi=true