Instance-based Domain Adaptation via Multiclustering Logistic Approximation
With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must b...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2018-01, Vol.33 (1), p.78-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | IEEE intelligent systems |
container_volume | 33 |
creator | Xu, Feng Yu, Jianfei Xia, Rui |
description | With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data. |
doi_str_mv | 10.1109/MIS.2018.012001555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8355888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8355888</ieee_id><sourcerecordid>2037356425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFa8eJfawKhYpWHICztXGcylWbhNhB8Pe4LeppR6s3O6sh5BboBICqh9XifcIoyAkFRikIIc7ICFQGKTCVnUct9jov2CW58n5DKeMRH5HXReMDNsamJXpbJY_tDl2TTCvsAgbXNsm3w2Q1bIMz28EH27tmnSzbtfNxk0y7rm9_3O6AXpOLGrfe3vzPMfmcP33MXtLl2_NiNl2mhikRUqTSFMIKDrlUGc1rakpjywxMlZeiQqyLSkDJaiuNsRKxqFEyhVBKpSwTfEzuj3dj9tdgfdCbduibGKkZ5QUXeXag2JEyfet9b2vd9fHR_lcD1fvSdCxN70vTp9Ki6e5octbak0FyIaSU_A9lxWmD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037356425</pqid></control><display><type>article</type><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xu, Feng ; Yu, Jianfei ; Xia, Rui</creator><creatorcontrib>Xu, Feng ; Yu, Jianfei ; Xia, Rui</creatorcontrib><description>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2018.012001555</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation ; Adaptation models ; Affective Computing ; Approximation ; Artificial intelligence ; Biological system modeling ; Clustering ; Data mining ; Feature extraction ; instance adaptation ; Internet/Web technologies ; Logistics ; Machine learning ; Mathematical analysis ; multiclustering logistic approximation ; multidistributional training data ; Portable computers ; Sentiment analysis ; Statistical models ; Training ; Training data</subject><ispartof>IEEE intelligent systems, 2018-01, Vol.33 (1), p.78-88</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</citedby><cites>FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8355888$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8355888$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yu, Jianfei</creatorcontrib><creatorcontrib>Xia, Rui</creatorcontrib><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Affective Computing</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>Biological system modeling</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>instance adaptation</subject><subject>Internet/Web technologies</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>multiclustering logistic approximation</subject><subject>multidistributional training data</subject><subject>Portable computers</subject><subject>Sentiment analysis</subject><subject>Statistical models</subject><subject>Training</subject><subject>Training data</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDnFa8eJfawKhYpWHICztXGcylWbhNhB8Pe4LeppR6s3O6sh5BboBICqh9XifcIoyAkFRikIIc7ICFQGKTCVnUct9jov2CW58n5DKeMRH5HXReMDNsamJXpbJY_tDl2TTCvsAgbXNsm3w2Q1bIMz28EH27tmnSzbtfNxk0y7rm9_3O6AXpOLGrfe3vzPMfmcP33MXtLl2_NiNl2mhikRUqTSFMIKDrlUGc1rakpjywxMlZeiQqyLSkDJaiuNsRKxqFEyhVBKpSwTfEzuj3dj9tdgfdCbduibGKkZ5QUXeXag2JEyfet9b2vd9fHR_lcD1fvSdCxN70vTp9Ki6e5octbak0FyIaSU_A9lxWmD</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Xu, Feng</creator><creator>Yu, Jianfei</creator><creator>Xia, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201801</creationdate><title>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</title><author>Xu, Feng ; Yu, Jianfei ; Xia, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a08c75e531689406f0cbceb41cd6b5daaf7d51b2fe8cce8aa7fa829a1b899e253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Affective Computing</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>Biological system modeling</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>instance adaptation</topic><topic>Internet/Web technologies</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>multiclustering logistic approximation</topic><topic>multidistributional training data</topic><topic>Portable computers</topic><topic>Sentiment analysis</topic><topic>Statistical models</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Yu, Jianfei</creatorcontrib><creatorcontrib>Xia, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Feng</au><au>Yu, Jianfei</au><au>Xia, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance-based Domain Adaptation via Multiclustering Logistic Approximation</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2018-01</date><risdate>2018</risdate><volume>33</volume><issue>1</issue><spage>78</spage><epage>88</epage><pages>78-88</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MIS.2018.012001555</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2018-01, Vol.33 (1), p.78-88 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_ieee_primary_8355888 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Adaptation Adaptation models Affective Computing Approximation Artificial intelligence Biological system modeling Clustering Data mining Feature extraction instance adaptation Internet/Web technologies Logistics Machine learning Mathematical analysis multiclustering logistic approximation multidistributional training data Portable computers Sentiment analysis Statistical models Training Training data |
title | Instance-based Domain Adaptation via Multiclustering Logistic Approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance-based%20Domain%20Adaptation%20via%20Multiclustering%20Logistic%20Approximation&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Xu,%20Feng&rft.date=2018-01&rft.volume=33&rft.issue=1&rft.spage=78&rft.epage=88&rft.pages=78-88&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2018.012001555&rft_dat=%3Cproquest_RIE%3E2037356425%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037356425&rft_id=info:pmid/&rft_ieee_id=8355888&rfr_iscdi=true |