Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks
The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconst...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2018-10, Vol.37 (10), p.2367-2377 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2377 |
---|---|
container_issue | 10 |
container_start_page | 2367 |
container_title | IEEE transactions on medical imaging |
container_volume | 37 |
creator | Hamilton, Sarah Jane Hauptmann, A. |
description | The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems. |
doi_str_mv | 10.1109/TMI.2018.2828303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8352045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8352045</ieee_id><sourcerecordid>2117176241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</originalsourceid><addsrcrecordid>eNpdkE1r20AQhpfSUDtO74VCEeSSi9zZL2m3tzSfBjeB4JDelpU0spVKlrorEfzvs44dH3IamHnel-Eh5BuFKaWgfy7-zKYMqJoyxRQH_omMqZQqZlL8_UzGwFIVAyRsRI69fwagQoL-QkZMay2A8TF5ukTsosv4t3W_oge0dbyoGoyuasx7V-W2jmZNh4Vd5xgt2qZdOtutNmFpl9V6GT1V_Sp6q7jDwQX6DvuX1v3zJ-SotLXHr_s5IY_XV4uL23h-fzO7OJ_HueBJHycy0SWTWaozkELlvASraVEWRVnaTAEvkGcpQs6Rl5oCtyJlXMhwlEh1wifkbNfbufb_gL43TeVzrGu7xnbwhkGiuAAeqibk9AP63A5uHb4zjNKUpgkTNFCwo3LXeu-wNJ2rGus2hoLZSjdButlKN3vpIfJjXzxkDRaHwLvlAHzfARUiHs6KSwZC8ldOR4O4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176241</pqid></control><display><type>article</type><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Hamilton, Sarah Jane ; Hauptmann, A.</creator><creatorcontrib>Hamilton, Sarah Jane ; Hauptmann, A.</creatorcontrib><description>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2828303</identifier><identifier>PMID: 29994023</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer Simulation ; Conductivity ; conductivity imaging ; Current measurement ; D-bar methods ; Data recovery ; Deep Learning ; Electric Impedance ; Electrical impedance ; Electrical impedance tomography ; Fourier Analysis ; Humans ; Ill posed problems ; Image processing ; Image reconstruction ; Impedance ; Inverse problems ; Low pass filters ; Lung - diagnostic imaging ; Mathematical analysis ; Medical imaging ; Neural networks ; Phantoms, Imaging ; Post-production processing ; Radiography, Thoracic ; Real-time systems ; Robustness ; Robustness (mathematics) ; Tomography ; Tomography - instrumentation ; Tomography - methods</subject><ispartof>IEEE transactions on medical imaging, 2018-10, Vol.37 (10), p.2367-2377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</citedby><cites>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</cites><orcidid>0000-0002-3756-8121 ; 0000-0001-6298-2925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8352045$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Sarah Jane</creatorcontrib><creatorcontrib>Hauptmann, A.</creatorcontrib><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Simulation</subject><subject>Conductivity</subject><subject>conductivity imaging</subject><subject>Current measurement</subject><subject>D-bar methods</subject><subject>Data recovery</subject><subject>Deep Learning</subject><subject>Electric Impedance</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Ill posed problems</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Impedance</subject><subject>Inverse problems</subject><subject>Low pass filters</subject><subject>Lung - diagnostic imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Phantoms, Imaging</subject><subject>Post-production processing</subject><subject>Radiography, Thoracic</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Tomography</subject><subject>Tomography - instrumentation</subject><subject>Tomography - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r20AQhpfSUDtO74VCEeSSi9zZL2m3tzSfBjeB4JDelpU0spVKlrorEfzvs44dH3IamHnel-Eh5BuFKaWgfy7-zKYMqJoyxRQH_omMqZQqZlL8_UzGwFIVAyRsRI69fwagQoL-QkZMay2A8TF5ukTsosv4t3W_oge0dbyoGoyuasx7V-W2jmZNh4Vd5xgt2qZdOtutNmFpl9V6GT1V_Sp6q7jDwQX6DvuX1v3zJ-SotLXHr_s5IY_XV4uL23h-fzO7OJ_HueBJHycy0SWTWaozkELlvASraVEWRVnaTAEvkGcpQs6Rl5oCtyJlXMhwlEh1wifkbNfbufb_gL43TeVzrGu7xnbwhkGiuAAeqibk9AP63A5uHb4zjNKUpgkTNFCwo3LXeu-wNJ2rGus2hoLZSjdButlKN3vpIfJjXzxkDRaHwLvlAHzfARUiHs6KSwZC8ldOR4O4</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Hamilton, Sarah Jane</creator><creator>Hauptmann, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid><orcidid>https://orcid.org/0000-0001-6298-2925</orcidid></search><sort><creationdate>20181001</creationdate><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><author>Hamilton, Sarah Jane ; Hauptmann, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Simulation</topic><topic>Conductivity</topic><topic>conductivity imaging</topic><topic>Current measurement</topic><topic>D-bar methods</topic><topic>Data recovery</topic><topic>Deep Learning</topic><topic>Electric Impedance</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Ill posed problems</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Impedance</topic><topic>Inverse problems</topic><topic>Low pass filters</topic><topic>Lung - diagnostic imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Phantoms, Imaging</topic><topic>Post-production processing</topic><topic>Radiography, Thoracic</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Tomography</topic><topic>Tomography - instrumentation</topic><topic>Tomography - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Sarah Jane</creatorcontrib><creatorcontrib>Hauptmann, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Sarah Jane</au><au>Hauptmann, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>37</volume><issue>10</issue><spage>2367</spage><epage>2377</epage><pages>2367-2377</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994023</pmid><doi>10.1109/TMI.2018.2828303</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid><orcidid>https://orcid.org/0000-0001-6298-2925</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2018-10, Vol.37 (10), p.2367-2377 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_8352045 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks Computer Simulation Conductivity conductivity imaging Current measurement D-bar methods Data recovery Deep Learning Electric Impedance Electrical impedance Electrical impedance tomography Fourier Analysis Humans Ill posed problems Image processing Image reconstruction Impedance Inverse problems Low pass filters Lung - diagnostic imaging Mathematical analysis Medical imaging Neural networks Phantoms, Imaging Post-production processing Radiography, Thoracic Real-time systems Robustness Robustness (mathematics) Tomography Tomography - instrumentation Tomography - methods |
title | Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20D-Bar:%20Real-Time%20Electrical%20Impedance%20Tomography%20Imaging%20With%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Hamilton,%20Sarah%20Jane&rft.date=2018-10-01&rft.volume=37&rft.issue=10&rft.spage=2367&rft.epage=2377&rft.pages=2367-2377&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2828303&rft_dat=%3Cproquest_ieee_%3E2117176241%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117176241&rft_id=info:pmid/29994023&rft_ieee_id=8352045&rfr_iscdi=true |