Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2018-10, Vol.37 (10), p.2367-2377
Hauptverfasser: Hamilton, Sarah Jane, Hauptmann, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2377
container_issue 10
container_start_page 2367
container_title IEEE transactions on medical imaging
container_volume 37
creator Hamilton, Sarah Jane
Hauptmann, A.
description The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
doi_str_mv 10.1109/TMI.2018.2828303
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8352045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8352045</ieee_id><sourcerecordid>2117176241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</originalsourceid><addsrcrecordid>eNpdkE1r20AQhpfSUDtO74VCEeSSi9zZL2m3tzSfBjeB4JDelpU0spVKlrorEfzvs44dH3IamHnel-Eh5BuFKaWgfy7-zKYMqJoyxRQH_omMqZQqZlL8_UzGwFIVAyRsRI69fwagQoL-QkZMay2A8TF5ukTsosv4t3W_oge0dbyoGoyuasx7V-W2jmZNh4Vd5xgt2qZdOtutNmFpl9V6GT1V_Sp6q7jDwQX6DvuX1v3zJ-SotLXHr_s5IY_XV4uL23h-fzO7OJ_HueBJHycy0SWTWaozkELlvASraVEWRVnaTAEvkGcpQs6Rl5oCtyJlXMhwlEh1wifkbNfbufb_gL43TeVzrGu7xnbwhkGiuAAeqibk9AP63A5uHb4zjNKUpgkTNFCwo3LXeu-wNJ2rGus2hoLZSjdButlKN3vpIfJjXzxkDRaHwLvlAHzfARUiHs6KSwZC8ldOR4O4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117176241</pqid></control><display><type>article</type><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Hamilton, Sarah Jane ; Hauptmann, A.</creator><creatorcontrib>Hamilton, Sarah Jane ; Hauptmann, A.</creatorcontrib><description>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2828303</identifier><identifier>PMID: 29994023</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Computer Simulation ; Conductivity ; conductivity imaging ; Current measurement ; D-bar methods ; Data recovery ; Deep Learning ; Electric Impedance ; Electrical impedance ; Electrical impedance tomography ; Fourier Analysis ; Humans ; Ill posed problems ; Image processing ; Image reconstruction ; Impedance ; Inverse problems ; Low pass filters ; Lung - diagnostic imaging ; Mathematical analysis ; Medical imaging ; Neural networks ; Phantoms, Imaging ; Post-production processing ; Radiography, Thoracic ; Real-time systems ; Robustness ; Robustness (mathematics) ; Tomography ; Tomography - instrumentation ; Tomography - methods</subject><ispartof>IEEE transactions on medical imaging, 2018-10, Vol.37 (10), p.2367-2377</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</citedby><cites>FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</cites><orcidid>0000-0002-3756-8121 ; 0000-0001-6298-2925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8352045$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Sarah Jane</creatorcontrib><creatorcontrib>Hauptmann, A.</creatorcontrib><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Simulation</subject><subject>Conductivity</subject><subject>conductivity imaging</subject><subject>Current measurement</subject><subject>D-bar methods</subject><subject>Data recovery</subject><subject>Deep Learning</subject><subject>Electric Impedance</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Fourier Analysis</subject><subject>Humans</subject><subject>Ill posed problems</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Impedance</subject><subject>Inverse problems</subject><subject>Low pass filters</subject><subject>Lung - diagnostic imaging</subject><subject>Mathematical analysis</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Phantoms, Imaging</subject><subject>Post-production processing</subject><subject>Radiography, Thoracic</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Tomography</subject><subject>Tomography - instrumentation</subject><subject>Tomography - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1r20AQhpfSUDtO74VCEeSSi9zZL2m3tzSfBjeB4JDelpU0spVKlrorEfzvs44dH3IamHnel-Eh5BuFKaWgfy7-zKYMqJoyxRQH_omMqZQqZlL8_UzGwFIVAyRsRI69fwagQoL-QkZMay2A8TF5ukTsosv4t3W_oge0dbyoGoyuasx7V-W2jmZNh4Vd5xgt2qZdOtutNmFpl9V6GT1V_Sp6q7jDwQX6DvuX1v3zJ-SotLXHr_s5IY_XV4uL23h-fzO7OJ_HueBJHycy0SWTWaozkELlvASraVEWRVnaTAEvkGcpQs6Rl5oCtyJlXMhwlEh1wifkbNfbufb_gL43TeVzrGu7xnbwhkGiuAAeqibk9AP63A5uHb4zjNKUpgkTNFCwo3LXeu-wNJ2rGus2hoLZSjdButlKN3vpIfJjXzxkDRaHwLvlAHzfARUiHs6KSwZC8ldOR4O4</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Hamilton, Sarah Jane</creator><creator>Hauptmann, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid><orcidid>https://orcid.org/0000-0001-6298-2925</orcidid></search><sort><creationdate>20181001</creationdate><title>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</title><author>Hamilton, Sarah Jane ; Hauptmann, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-6569f25b79b0548c3f0a91dfddffab803de3b7e0c3e3f9103a472345fab5e1963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Simulation</topic><topic>Conductivity</topic><topic>conductivity imaging</topic><topic>Current measurement</topic><topic>D-bar methods</topic><topic>Data recovery</topic><topic>Deep Learning</topic><topic>Electric Impedance</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Fourier Analysis</topic><topic>Humans</topic><topic>Ill posed problems</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Impedance</topic><topic>Inverse problems</topic><topic>Low pass filters</topic><topic>Lung - diagnostic imaging</topic><topic>Mathematical analysis</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Phantoms, Imaging</topic><topic>Post-production processing</topic><topic>Radiography, Thoracic</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Tomography</topic><topic>Tomography - instrumentation</topic><topic>Tomography - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Sarah Jane</creatorcontrib><creatorcontrib>Hauptmann, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Sarah Jane</au><au>Hauptmann, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>37</volume><issue>10</issue><spage>2367</spage><epage>2377</epage><pages>2367-2377</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994023</pmid><doi>10.1109/TMI.2018.2828303</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3756-8121</orcidid><orcidid>https://orcid.org/0000-0001-6298-2925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2018-10, Vol.37 (10), p.2367-2377
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8352045
source MEDLINE; IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Computer Simulation
Conductivity
conductivity imaging
Current measurement
D-bar methods
Data recovery
Deep Learning
Electric Impedance
Electrical impedance
Electrical impedance tomography
Fourier Analysis
Humans
Ill posed problems
Image processing
Image reconstruction
Impedance
Inverse problems
Low pass filters
Lung - diagnostic imaging
Mathematical analysis
Medical imaging
Neural networks
Phantoms, Imaging
Post-production processing
Radiography, Thoracic
Real-time systems
Robustness
Robustness (mathematics)
Tomography
Tomography - instrumentation
Tomography - methods
title Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20D-Bar:%20Real-Time%20Electrical%20Impedance%20Tomography%20Imaging%20With%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Hamilton,%20Sarah%20Jane&rft.date=2018-10-01&rft.volume=37&rft.issue=10&rft.spage=2367&rft.epage=2377&rft.pages=2367-2377&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2828303&rft_dat=%3Cproquest_ieee_%3E2117176241%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117176241&rft_id=info:pmid/29994023&rft_ieee_id=8352045&rfr_iscdi=true