Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition

A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-06, Vol.66 (12), p.3327-3338
Hauptverfasser: Murata, Naoki, Koyama, Shoichi, Takamune, Norihiro, Saruwatari, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3338
container_issue 12
container_start_page 3327
container_title IEEE transactions on signal processing
container_volume 66
creator Murata, Naoki
Koyama, Shoichi
Takamune, Norihiro
Saruwatari, Hiroshi
description A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.
doi_str_mv 10.1109/TSP.2018.2830318
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8352013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8352013</ieee_id><sourcerecordid>10_1109_TSP_2018_2830318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6n7mSbHUq0KrRbTorew2Z3VlSQbsluw_96UFk8zvPM-c3gQuqVkQinJ7zfFesIIzSYs44TT7AyNaC5oQsQ0PR92Inkis-nnJboK4YcQKkSejlBTdKoPgN-h6yFAG1V0vsXb4NovvNrV0RnXQBuGUNV45X7BJK--b_AahiDu8YeL33jWdbXTRzR6XPhda_DCQW3wA2jfdD64w_EaXVhVB7g5zTHaLh438-dk-fb0Mp8tE82JjIkVjORVpYArVaWyYrllTFQ8NZIJO8RgYGpzJSqjpeWpZlZqq7QQVBglBR8jcvyrex9CD7bseteofl9SUh50lYOu8qCrPOkakLsj4gDgv55xObQ4_wMS3moq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</creator><creatorcontrib>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</creatorcontrib><description>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2830318</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Dictionaries ; Iteratively reweighted least-squares ; majoriza-tion-minimization ; Matrix decomposition ; mixed-norm penalty ; Optimization ; Signal processing algorithms ; sound field decomposition ; sparse representation ; Time-frequency analysis ; Transfer functions</subject><ispartof>IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3327-3338</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</citedby><cites>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</cites><orcidid>0000-0003-2283-0884 ; 0000-0003-0876-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8352013$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Murata, Naoki</creatorcontrib><creatorcontrib>Koyama, Shoichi</creatorcontrib><creatorcontrib>Takamune, Norihiro</creatorcontrib><creatorcontrib>Saruwatari, Hiroshi</creatorcontrib><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</description><subject>Acoustics</subject><subject>Dictionaries</subject><subject>Iteratively reweighted least-squares</subject><subject>majoriza-tion-minimization</subject><subject>Matrix decomposition</subject><subject>mixed-norm penalty</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>sound field decomposition</subject><subject>sparse representation</subject><subject>Time-frequency analysis</subject><subject>Transfer functions</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6n7mSbHUq0KrRbTorew2Z3VlSQbsluw_96UFk8zvPM-c3gQuqVkQinJ7zfFesIIzSYs44TT7AyNaC5oQsQ0PR92Inkis-nnJboK4YcQKkSejlBTdKoPgN-h6yFAG1V0vsXb4NovvNrV0RnXQBuGUNV45X7BJK--b_AahiDu8YeL33jWdbXTRzR6XPhda_DCQW3wA2jfdD64w_EaXVhVB7g5zTHaLh438-dk-fb0Mp8tE82JjIkVjORVpYArVaWyYrllTFQ8NZIJO8RgYGpzJSqjpeWpZlZqq7QQVBglBR8jcvyrex9CD7bseteofl9SUh50lYOu8qCrPOkakLsj4gDgv55xObQ4_wMS3moq</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Murata, Naoki</creator><creator>Koyama, Shoichi</creator><creator>Takamune, Norihiro</creator><creator>Saruwatari, Hiroshi</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2283-0884</orcidid><orcidid>https://orcid.org/0000-0003-0876-5617</orcidid></search><sort><creationdate>20180615</creationdate><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><author>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Dictionaries</topic><topic>Iteratively reweighted least-squares</topic><topic>majoriza-tion-minimization</topic><topic>Matrix decomposition</topic><topic>mixed-norm penalty</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>sound field decomposition</topic><topic>sparse representation</topic><topic>Time-frequency analysis</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murata, Naoki</creatorcontrib><creatorcontrib>Koyama, Shoichi</creatorcontrib><creatorcontrib>Takamune, Norihiro</creatorcontrib><creatorcontrib>Saruwatari, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murata, Naoki</au><au>Koyama, Shoichi</au><au>Takamune, Norihiro</au><au>Saruwatari, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-06-15</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>3327</spage><epage>3338</epage><pages>3327-3338</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2830318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2283-0884</orcidid><orcidid>https://orcid.org/0000-0003-0876-5617</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3327-3338
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8352013
source IEEE Electronic Library (IEL)
subjects Acoustics
Dictionaries
Iteratively reweighted least-squares
majoriza-tion-minimization
Matrix decomposition
mixed-norm penalty
Optimization
Signal processing algorithms
sound field decomposition
sparse representation
Time-frequency analysis
Transfer functions
title Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Representation%20Using%20Multidimensional%20Mixed-Norm%20Penalty%20With%20Application%20to%20Sound%20Field%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Murata,%20Naoki&rft.date=2018-06-15&rft.volume=66&rft.issue=12&rft.spage=3327&rft.epage=3338&rft.pages=3327-3338&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2830318&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2018_2830318%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8352013&rfr_iscdi=true