Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition
A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-06, Vol.66 (12), p.3327-3338 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3338 |
---|---|
container_issue | 12 |
container_start_page | 3327 |
container_title | IEEE transactions on signal processing |
container_volume | 66 |
creator | Murata, Naoki Koyama, Shoichi Takamune, Norihiro Saruwatari, Hiroshi |
description | A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition. |
doi_str_mv | 10.1109/TSP.2018.2830318 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8352013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8352013</ieee_id><sourcerecordid>10_1109_TSP_2018_2830318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6n7mSbHUq0KrRbTorew2Z3VlSQbsluw_96UFk8zvPM-c3gQuqVkQinJ7zfFesIIzSYs44TT7AyNaC5oQsQ0PR92Inkis-nnJboK4YcQKkSejlBTdKoPgN-h6yFAG1V0vsXb4NovvNrV0RnXQBuGUNV45X7BJK--b_AahiDu8YeL33jWdbXTRzR6XPhda_DCQW3wA2jfdD64w_EaXVhVB7g5zTHaLh438-dk-fb0Mp8tE82JjIkVjORVpYArVaWyYrllTFQ8NZIJO8RgYGpzJSqjpeWpZlZqq7QQVBglBR8jcvyrex9CD7bseteofl9SUh50lYOu8qCrPOkakLsj4gDgv55xObQ4_wMS3moq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</creator><creatorcontrib>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</creatorcontrib><description>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2830318</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Dictionaries ; Iteratively reweighted least-squares ; majoriza-tion-minimization ; Matrix decomposition ; mixed-norm penalty ; Optimization ; Signal processing algorithms ; sound field decomposition ; sparse representation ; Time-frequency analysis ; Transfer functions</subject><ispartof>IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3327-3338</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</citedby><cites>FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</cites><orcidid>0000-0003-2283-0884 ; 0000-0003-0876-5617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8352013$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Murata, Naoki</creatorcontrib><creatorcontrib>Koyama, Shoichi</creatorcontrib><creatorcontrib>Takamune, Norihiro</creatorcontrib><creatorcontrib>Saruwatari, Hiroshi</creatorcontrib><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</description><subject>Acoustics</subject><subject>Dictionaries</subject><subject>Iteratively reweighted least-squares</subject><subject>majoriza-tion-minimization</subject><subject>Matrix decomposition</subject><subject>mixed-norm penalty</subject><subject>Optimization</subject><subject>Signal processing algorithms</subject><subject>sound field decomposition</subject><subject>sparse representation</subject><subject>Time-frequency analysis</subject><subject>Transfer functions</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6n7mSbHUq0KrRbTorew2Z3VlSQbsluw_96UFk8zvPM-c3gQuqVkQinJ7zfFesIIzSYs44TT7AyNaC5oQsQ0PR92Inkis-nnJboK4YcQKkSejlBTdKoPgN-h6yFAG1V0vsXb4NovvNrV0RnXQBuGUNV45X7BJK--b_AahiDu8YeL33jWdbXTRzR6XPhda_DCQW3wA2jfdD64w_EaXVhVB7g5zTHaLh438-dk-fb0Mp8tE82JjIkVjORVpYArVaWyYrllTFQ8NZIJO8RgYGpzJSqjpeWpZlZqq7QQVBglBR8jcvyrex9CD7bseteofl9SUh50lYOu8qCrPOkakLsj4gDgv55xObQ4_wMS3moq</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Murata, Naoki</creator><creator>Koyama, Shoichi</creator><creator>Takamune, Norihiro</creator><creator>Saruwatari, Hiroshi</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2283-0884</orcidid><orcidid>https://orcid.org/0000-0003-0876-5617</orcidid></search><sort><creationdate>20180615</creationdate><title>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</title><author>Murata, Naoki ; Koyama, Shoichi ; Takamune, Norihiro ; Saruwatari, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-f4209bbae3aab65b29f224b36d524fae3ede7f9a4bdc5f36c2f5cfac4414da543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>Dictionaries</topic><topic>Iteratively reweighted least-squares</topic><topic>majoriza-tion-minimization</topic><topic>Matrix decomposition</topic><topic>mixed-norm penalty</topic><topic>Optimization</topic><topic>Signal processing algorithms</topic><topic>sound field decomposition</topic><topic>sparse representation</topic><topic>Time-frequency analysis</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murata, Naoki</creatorcontrib><creatorcontrib>Koyama, Shoichi</creatorcontrib><creatorcontrib>Takamune, Norihiro</creatorcontrib><creatorcontrib>Saruwatari, Hiroshi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murata, Naoki</au><au>Koyama, Shoichi</au><au>Takamune, Norihiro</au><au>Saruwatari, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-06-15</date><risdate>2018</risdate><volume>66</volume><issue>12</issue><spage>3327</spage><epage>3338</epage><pages>3327-3338</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A sparse representation method for multidimensional signals is proposed. In generally used group-sparse representation algorithms, the sparsity is imposed only on a single dimension and the signals in the other dimensions are solved in the least-square-error sense. However, multidimensional signals can be sparse in multiple dimensions. For example, in acoustic array processing, in addition to the sparsity of the spatial distribution of acoustic sources, acoustic source signals will also be sparse in the time-frequency domain. We define a multidimensional mixed-norm penalty, which enables the sparsity to be controlled in each dimension. The majorization-minimization approach is applied to derive the optimization algorithm. The proposed algorithm has the advantages of a wide range for the sparsity-controlling parameters, a small cost of adjusting the balancing parameters, and a low computational cost compared with current methods. Numerical experiments indicate that the proposed method is also effective for application to sound field decomposition.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2830318</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2283-0884</orcidid><orcidid>https://orcid.org/0000-0003-0876-5617</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2018-06, Vol.66 (12), p.3327-3338 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_8352013 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Dictionaries Iteratively reweighted least-squares majoriza-tion-minimization Matrix decomposition mixed-norm penalty Optimization Signal processing algorithms sound field decomposition sparse representation Time-frequency analysis Transfer functions |
title | Sparse Representation Using Multidimensional Mixed-Norm Penalty With Application to Sound Field Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Representation%20Using%20Multidimensional%20Mixed-Norm%20Penalty%20With%20Application%20to%20Sound%20Field%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Murata,%20Naoki&rft.date=2018-06-15&rft.volume=66&rft.issue=12&rft.spage=3327&rft.epage=3338&rft.pages=3327-3338&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2830318&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2018_2830318%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8352013&rfr_iscdi=true |