Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications

Three optical ring resonator (ORR)-based integrated ultra-low-loss silicon nitride 1 × 4 optical beamforming networks (OBFNs) for millimeter-wave (mmW) beamsteering are reported. The group delay ripple of multi-ORR delay line was theoretically optimized and quantitatively studied by applying a genet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2018-07, Vol.24 (4), p.1-10
Hauptverfasser: Yuan Liu, Wichman, Adam R., Isaac, Brandon, Kalkavage, Jean, Adles, Eric J., Clark, Thomas R., Klamkin, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 4
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 24
creator Yuan Liu
Wichman, Adam R.
Isaac, Brandon
Kalkavage, Jean
Adles, Eric J.
Clark, Thomas R.
Klamkin, Jonathan
description Three optical ring resonator (ORR)-based integrated ultra-low-loss silicon nitride 1 × 4 optical beamforming networks (OBFNs) for millimeter-wave (mmW) beamsteering are reported. The group delay ripple of multi-ORR delay line was theoretically optimized and quantitatively studied by applying a genetic algorithm. The optimized 3-ORR delay true time delay (TTD) responses were experimentally achieved with 208.7 ps and 172.4 ps of delay tuning range for bandwidth of 6.3 GHz and 8.7 GHz, corresponding to a phase shift of 17.1π and 14.1π for 41 GHz mmW signal. The TTD performance of the 3-ORR delay line was also verified by controlling the delay of 3 Gbps data stream. A 22° beamsteering angle equivalent OBFN delay distribution was achieved for 41 GHz half-wavelength dipole antenna array. Both the theoretical analysis and experiments exhibit that the topology with one ring shared could balance the system complexity and TTD bandwidth well. Using heterodyne up-conversion technology and a single delay path, 41 GHz mmW signal with 3 Gbps OOK NRZ data modulation was generated and delayed.
doi_str_mv 10.1109/JSTQE.2018.2827786
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8343862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8343862</ieee_id><sourcerecordid>2037344477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f1e08e0d783ff136baf28c050b8518626c264671b14a6969a0e726c5fd610f003</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMIPwCUS54T1I7ZzLFV5qWqF2gouyHISG7mkSXBSVfw9Lq04rPahmdndQegaQ4IxZHcvi-XrJCGAZUIkEULyEzTAaSpjljJyGmoQIiYc3s_RRdetAUAyCQP0sap6r-NpswvRddHCVa5o6mjmeu9KE83b3hW6iu6N3tjGb1z9Gc1Mv2v8VxT66C2Acl2XofCmMkFh1LZBQveuqbtLdGZ11ZmrYx6i1cNkOX6Kp_PH5_FoGheUZn1ssQFpoBSSWospz7UlsoAUcpliyQkvCGdc4BwzzTOeaTAiDFNbcgwWgA7R7UG39c331nS9WjdbX4eVigAVlDEmRECRA6rw4VVvrGq922j_ozCovY3qz0a1t1EdbQykmwPJGWP-CZIyGg6jv13bbm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037344477</pqid></control><display><type>article</type><title>Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan Liu ; Wichman, Adam R. ; Isaac, Brandon ; Kalkavage, Jean ; Adles, Eric J. ; Clark, Thomas R. ; Klamkin, Jonathan</creator><creatorcontrib>Yuan Liu ; Wichman, Adam R. ; Isaac, Brandon ; Kalkavage, Jean ; Adles, Eric J. ; Clark, Thomas R. ; Klamkin, Jonathan</creatorcontrib><description>Three optical ring resonator (ORR)-based integrated ultra-low-loss silicon nitride 1 × 4 optical beamforming networks (OBFNs) for millimeter-wave (mmW) beamsteering are reported. The group delay ripple of multi-ORR delay line was theoretically optimized and quantitatively studied by applying a genetic algorithm. The optimized 3-ORR delay true time delay (TTD) responses were experimentally achieved with 208.7 ps and 172.4 ps of delay tuning range for bandwidth of 6.3 GHz and 8.7 GHz, corresponding to a phase shift of 17.1π and 14.1π for 41 GHz mmW signal. The TTD performance of the 3-ORR delay line was also verified by controlling the delay of 3 Gbps data stream. A 22° beamsteering angle equivalent OBFN delay distribution was achieved for 41 GHz half-wavelength dipole antenna array. Both the theoretical analysis and experiments exhibit that the topology with one ring shared could balance the system complexity and TTD bandwidth well. Using heterodyne up-conversion technology and a single delay path, 41 GHz mmW signal with 3 Gbps OOK NRZ data modulation was generated and delayed.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2018.2827786</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Bandwidth ; Bandwidths ; Beamforming ; Broadband ; Delay ; Delays ; Dipole antennas ; Genetic algorithms ; Group delay ; High-speed optical techniques ; Integrated optics ; Microwave photonics ; millimeter wave communication ; Millimeter waves ; Nonlinear optics ; Optical communication ; Optical losses ; optical ring resonators ; Optical waveguides ; phased arrays ; photonic integrated circuits ; Silicon nitride ; Time lag ; true time delays ; Ultrawideband ; Upconversion ; Wireless networks</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2018-07, Vol.24 (4), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f1e08e0d783ff136baf28c050b8518626c264671b14a6969a0e726c5fd610f003</citedby><cites>FETCH-LOGICAL-c339t-f1e08e0d783ff136baf28c050b8518626c264671b14a6969a0e726c5fd610f003</cites><orcidid>0000-0002-5951-5258 ; 0000-0001-6676-6875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8343862$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Yuan Liu</creatorcontrib><creatorcontrib>Wichman, Adam R.</creatorcontrib><creatorcontrib>Isaac, Brandon</creatorcontrib><creatorcontrib>Kalkavage, Jean</creatorcontrib><creatorcontrib>Adles, Eric J.</creatorcontrib><creatorcontrib>Clark, Thomas R.</creatorcontrib><creatorcontrib>Klamkin, Jonathan</creatorcontrib><title>Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Three optical ring resonator (ORR)-based integrated ultra-low-loss silicon nitride 1 × 4 optical beamforming networks (OBFNs) for millimeter-wave (mmW) beamsteering are reported. The group delay ripple of multi-ORR delay line was theoretically optimized and quantitatively studied by applying a genetic algorithm. The optimized 3-ORR delay true time delay (TTD) responses were experimentally achieved with 208.7 ps and 172.4 ps of delay tuning range for bandwidth of 6.3 GHz and 8.7 GHz, corresponding to a phase shift of 17.1π and 14.1π for 41 GHz mmW signal. The TTD performance of the 3-ORR delay line was also verified by controlling the delay of 3 Gbps data stream. A 22° beamsteering angle equivalent OBFN delay distribution was achieved for 41 GHz half-wavelength dipole antenna array. Both the theoretical analysis and experiments exhibit that the topology with one ring shared could balance the system complexity and TTD bandwidth well. Using heterodyne up-conversion technology and a single delay path, 41 GHz mmW signal with 3 Gbps OOK NRZ data modulation was generated and delayed.</description><subject>Antenna arrays</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Delay</subject><subject>Delays</subject><subject>Dipole antennas</subject><subject>Genetic algorithms</subject><subject>Group delay</subject><subject>High-speed optical techniques</subject><subject>Integrated optics</subject><subject>Microwave photonics</subject><subject>millimeter wave communication</subject><subject>Millimeter waves</subject><subject>Nonlinear optics</subject><subject>Optical communication</subject><subject>Optical losses</subject><subject>optical ring resonators</subject><subject>Optical waveguides</subject><subject>phased arrays</subject><subject>photonic integrated circuits</subject><subject>Silicon nitride</subject><subject>Time lag</subject><subject>true time delays</subject><subject>Ultrawideband</subject><subject>Upconversion</subject><subject>Wireless networks</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIlMIPwCUS54T1I7ZzLFV5qWqF2gouyHISG7mkSXBSVfw9Lq04rPahmdndQegaQ4IxZHcvi-XrJCGAZUIkEULyEzTAaSpjljJyGmoQIiYc3s_RRdetAUAyCQP0sap6r-NpswvRddHCVa5o6mjmeu9KE83b3hW6iu6N3tjGb1z9Gc1Mv2v8VxT66C2Acl2XofCmMkFh1LZBQveuqbtLdGZ11ZmrYx6i1cNkOX6Kp_PH5_FoGheUZn1ssQFpoBSSWospz7UlsoAUcpliyQkvCGdc4BwzzTOeaTAiDFNbcgwWgA7R7UG39c331nS9WjdbX4eVigAVlDEmRECRA6rw4VVvrGq922j_ozCovY3qz0a1t1EdbQykmwPJGWP-CZIyGg6jv13bbm4</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Yuan Liu</creator><creator>Wichman, Adam R.</creator><creator>Isaac, Brandon</creator><creator>Kalkavage, Jean</creator><creator>Adles, Eric J.</creator><creator>Clark, Thomas R.</creator><creator>Klamkin, Jonathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5951-5258</orcidid><orcidid>https://orcid.org/0000-0001-6676-6875</orcidid></search><sort><creationdate>20180701</creationdate><title>Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications</title><author>Yuan Liu ; Wichman, Adam R. ; Isaac, Brandon ; Kalkavage, Jean ; Adles, Eric J. ; Clark, Thomas R. ; Klamkin, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f1e08e0d783ff136baf28c050b8518626c264671b14a6969a0e726c5fd610f003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antenna arrays</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Delay</topic><topic>Delays</topic><topic>Dipole antennas</topic><topic>Genetic algorithms</topic><topic>Group delay</topic><topic>High-speed optical techniques</topic><topic>Integrated optics</topic><topic>Microwave photonics</topic><topic>millimeter wave communication</topic><topic>Millimeter waves</topic><topic>Nonlinear optics</topic><topic>Optical communication</topic><topic>Optical losses</topic><topic>optical ring resonators</topic><topic>Optical waveguides</topic><topic>phased arrays</topic><topic>photonic integrated circuits</topic><topic>Silicon nitride</topic><topic>Time lag</topic><topic>true time delays</topic><topic>Ultrawideband</topic><topic>Upconversion</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan Liu</creatorcontrib><creatorcontrib>Wichman, Adam R.</creatorcontrib><creatorcontrib>Isaac, Brandon</creatorcontrib><creatorcontrib>Kalkavage, Jean</creatorcontrib><creatorcontrib>Adles, Eric J.</creatorcontrib><creatorcontrib>Clark, Thomas R.</creatorcontrib><creatorcontrib>Klamkin, Jonathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan Liu</au><au>Wichman, Adam R.</au><au>Isaac, Brandon</au><au>Kalkavage, Jean</au><au>Adles, Eric J.</au><au>Clark, Thomas R.</au><au>Klamkin, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>24</volume><issue>4</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Three optical ring resonator (ORR)-based integrated ultra-low-loss silicon nitride 1 × 4 optical beamforming networks (OBFNs) for millimeter-wave (mmW) beamsteering are reported. The group delay ripple of multi-ORR delay line was theoretically optimized and quantitatively studied by applying a genetic algorithm. The optimized 3-ORR delay true time delay (TTD) responses were experimentally achieved with 208.7 ps and 172.4 ps of delay tuning range for bandwidth of 6.3 GHz and 8.7 GHz, corresponding to a phase shift of 17.1π and 14.1π for 41 GHz mmW signal. The TTD performance of the 3-ORR delay line was also verified by controlling the delay of 3 Gbps data stream. A 22° beamsteering angle equivalent OBFN delay distribution was achieved for 41 GHz half-wavelength dipole antenna array. Both the theoretical analysis and experiments exhibit that the topology with one ring shared could balance the system complexity and TTD bandwidth well. Using heterodyne up-conversion technology and a single delay path, 41 GHz mmW signal with 3 Gbps OOK NRZ data modulation was generated and delayed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2018.2827786</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5951-5258</orcidid><orcidid>https://orcid.org/0000-0001-6676-6875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2018-07, Vol.24 (4), p.1-10
issn 1077-260X
1558-4542
language eng
recordid cdi_ieee_primary_8343862
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Bandwidth
Bandwidths
Beamforming
Broadband
Delay
Delays
Dipole antennas
Genetic algorithms
Group delay
High-speed optical techniques
Integrated optics
Microwave photonics
millimeter wave communication
Millimeter waves
Nonlinear optics
Optical communication
Optical losses
optical ring resonators
Optical waveguides
phased arrays
photonic integrated circuits
Silicon nitride
Time lag
true time delays
Ultrawideband
Upconversion
Wireless networks
title Ultra-Low-Loss Silicon Nitride Optical Beamforming Network for Wideband Wireless Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Low-Loss%20Silicon%20Nitride%20Optical%20Beamforming%20Network%20for%20Wideband%20Wireless%20Applications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Yuan%20Liu&rft.date=2018-07-01&rft.volume=24&rft.issue=4&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2018.2827786&rft_dat=%3Cproquest_ieee_%3E2037344477%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037344477&rft_id=info:pmid/&rft_ieee_id=8343862&rfr_iscdi=true