Hyperspectral Image Classification With Deep Learning Models

Deep learning has achieved great successes in conventional computer vision tasks. In this paper, we exploit deep learning techniques to address the hyperspectral image classification problem. In contrast to conventional computer vision tasks that only examine the spatial context, our proposed method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-09, Vol.56 (9), p.5408-5423
Hauptverfasser: Yang, Xiaofei, Ye, Yunming, Li, Xutao, Lau, Raymond Y. K., Zhang, Xiaofeng, Huang, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5423
container_issue 9
container_start_page 5408
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Yang, Xiaofei
Ye, Yunming
Li, Xutao
Lau, Raymond Y. K.
Zhang, Xiaofeng
Huang, Xiaohui
description Deep learning has achieved great successes in conventional computer vision tasks. In this paper, we exploit deep learning techniques to address the hyperspectral image classification problem. In contrast to conventional computer vision tasks that only examine the spatial context, our proposed method can exploit both spatial context and spectral correlation to enhance hyperspectral image classification. In particular, we advocate four new deep learning models, namely, 2-D convolutional neural network (2-D-CNN), 3-D-CNN, recurrent 2-D CNN (R-2-D-CNN), and recurrent 3-D-CNN (R-3-D-CNN) for hyperspectral image classification. We conducted rigorous experiments based on six publicly available data sets. Through a comparative evaluation with other state-of-the-art methods, our experimental results confirm the superiority of the proposed deep learning models, especially the R-3-D-CNN and the R-2-D-CNN deep learning models.
doi_str_mv 10.1109/TGRS.2018.2815613
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8340197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8340197</ieee_id><sourcerecordid>2117149376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-5f76769d2d17a3227d94fe2b86f2ac7359830b40e1ec2129658db88259f5f56f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE6dN98DbqRqW6gIWnE5TJM3NSVt4ky66L83pcXV3Zx7LxxCboGOAKh9WEw-PkeMghkxA1IBPyMDkNLkVAlxTgYUrMqZseySXKW0phSEBD0gj9N9izG1WHTR19ls41eYjWufUhWqwndVs82-q-4ne0Zsszn6uK22q-ytKbFO1-Qi-DrhzSmH5Ov1ZTGe5vP3yWz8NM8LLqDLZdBKK1uyErTnjOnSioBsaVRgvtBcWsPpUlAELBgwq6Qpl8YwaYMMUgU-JPfH3TY2vztMnVs3u7jtLx0D0CAs16qn4EgVsUkpYnBtrDY-7h1Qd5DkDpLcQZI7Seo7d8dOhYj_vOGi96X5H0FpYV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149376</pqid></control><display><type>article</type><title>Hyperspectral Image Classification With Deep Learning Models</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Xiaofei ; Ye, Yunming ; Li, Xutao ; Lau, Raymond Y. K. ; Zhang, Xiaofeng ; Huang, Xiaohui</creator><creatorcontrib>Yang, Xiaofei ; Ye, Yunming ; Li, Xutao ; Lau, Raymond Y. K. ; Zhang, Xiaofeng ; Huang, Xiaohui</creatorcontrib><description>Deep learning has achieved great successes in conventional computer vision tasks. In this paper, we exploit deep learning techniques to address the hyperspectral image classification problem. In contrast to conventional computer vision tasks that only examine the spatial context, our proposed method can exploit both spatial context and spectral correlation to enhance hyperspectral image classification. In particular, we advocate four new deep learning models, namely, 2-D convolutional neural network (2-D-CNN), 3-D-CNN, recurrent 2-D CNN (R-2-D-CNN), and recurrent 3-D-CNN (R-3-D-CNN) for hyperspectral image classification. We conducted rigorous experiments based on six publicly available data sets. Through a comparative evaluation with other state-of-the-art methods, our experimental results confirm the superiority of the proposed deep learning models, especially the R-3-D-CNN and the R-2-D-CNN deep learning models.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2815613</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Computer vision ; Context modeling ; Convolution ; Convolutional neural network (CNN) ; Deep learning ; Evaluation ; hyperspectral image ; Hyperspectral imaging ; Image classification ; Image contrast ; Image enhancement ; Kernel ; Machine learning ; Neural networks ; Spectral correlation ; Task analysis ; Three dimensional models ; Two dimensional models</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5408-5423</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-5f76769d2d17a3227d94fe2b86f2ac7359830b40e1ec2129658db88259f5f56f3</citedby><cites>FETCH-LOGICAL-c341t-5f76769d2d17a3227d94fe2b86f2ac7359830b40e1ec2129658db88259f5f56f3</cites><orcidid>0000-0002-5751-4550 ; 0000-0003-2458-6774 ; 0000-0003-1894-984X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8340197$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8340197$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Lau, Raymond Y. K.</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Huang, Xiaohui</creatorcontrib><title>Hyperspectral Image Classification With Deep Learning Models</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Deep learning has achieved great successes in conventional computer vision tasks. In this paper, we exploit deep learning techniques to address the hyperspectral image classification problem. In contrast to conventional computer vision tasks that only examine the spatial context, our proposed method can exploit both spatial context and spectral correlation to enhance hyperspectral image classification. In particular, we advocate four new deep learning models, namely, 2-D convolutional neural network (2-D-CNN), 3-D-CNN, recurrent 2-D CNN (R-2-D-CNN), and recurrent 3-D-CNN (R-3-D-CNN) for hyperspectral image classification. We conducted rigorous experiments based on six publicly available data sets. Through a comparative evaluation with other state-of-the-art methods, our experimental results confirm the superiority of the proposed deep learning models, especially the R-3-D-CNN and the R-2-D-CNN deep learning models.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Context modeling</subject><subject>Convolution</subject><subject>Convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Evaluation</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Spectral correlation</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Two dimensional models</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AURQdRsFZ_gLgJuE6dN98DbqRqW6gIWnE5TJM3NSVt4ky66L83pcXV3Zx7LxxCboGOAKh9WEw-PkeMghkxA1IBPyMDkNLkVAlxTgYUrMqZseySXKW0phSEBD0gj9N9izG1WHTR19ls41eYjWufUhWqwndVs82-q-4ne0Zsszn6uK22q-ytKbFO1-Qi-DrhzSmH5Ov1ZTGe5vP3yWz8NM8LLqDLZdBKK1uyErTnjOnSioBsaVRgvtBcWsPpUlAELBgwq6Qpl8YwaYMMUgU-JPfH3TY2vztMnVs3u7jtLx0D0CAs16qn4EgVsUkpYnBtrDY-7h1Qd5DkDpLcQZI7Seo7d8dOhYj_vOGi96X5H0FpYV4</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Yang, Xiaofei</creator><creator>Ye, Yunming</creator><creator>Li, Xutao</creator><creator>Lau, Raymond Y. K.</creator><creator>Zhang, Xiaofeng</creator><creator>Huang, Xiaohui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5751-4550</orcidid><orcidid>https://orcid.org/0000-0003-2458-6774</orcidid><orcidid>https://orcid.org/0000-0003-1894-984X</orcidid></search><sort><creationdate>20180901</creationdate><title>Hyperspectral Image Classification With Deep Learning Models</title><author>Yang, Xiaofei ; Ye, Yunming ; Li, Xutao ; Lau, Raymond Y. K. ; Zhang, Xiaofeng ; Huang, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-5f76769d2d17a3227d94fe2b86f2ac7359830b40e1ec2129658db88259f5f56f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Context modeling</topic><topic>Convolution</topic><topic>Convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Evaluation</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Spectral correlation</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Ye, Yunming</creatorcontrib><creatorcontrib>Li, Xutao</creatorcontrib><creatorcontrib>Lau, Raymond Y. K.</creatorcontrib><creatorcontrib>Zhang, Xiaofeng</creatorcontrib><creatorcontrib>Huang, Xiaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Xiaofei</au><au>Ye, Yunming</au><au>Li, Xutao</au><au>Lau, Raymond Y. K.</au><au>Zhang, Xiaofeng</au><au>Huang, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Image Classification With Deep Learning Models</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>56</volume><issue>9</issue><spage>5408</spage><epage>5423</epage><pages>5408-5423</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Deep learning has achieved great successes in conventional computer vision tasks. In this paper, we exploit deep learning techniques to address the hyperspectral image classification problem. In contrast to conventional computer vision tasks that only examine the spatial context, our proposed method can exploit both spatial context and spectral correlation to enhance hyperspectral image classification. In particular, we advocate four new deep learning models, namely, 2-D convolutional neural network (2-D-CNN), 3-D-CNN, recurrent 2-D CNN (R-2-D-CNN), and recurrent 3-D-CNN (R-3-D-CNN) for hyperspectral image classification. We conducted rigorous experiments based on six publicly available data sets. Through a comparative evaluation with other state-of-the-art methods, our experimental results confirm the superiority of the proposed deep learning models, especially the R-3-D-CNN and the R-2-D-CNN deep learning models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2815613</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5751-4550</orcidid><orcidid>https://orcid.org/0000-0003-2458-6774</orcidid><orcidid>https://orcid.org/0000-0003-1894-984X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-09, Vol.56 (9), p.5408-5423
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_8340197
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Computer vision
Context modeling
Convolution
Convolutional neural network (CNN)
Deep learning
Evaluation
hyperspectral image
Hyperspectral imaging
Image classification
Image contrast
Image enhancement
Kernel
Machine learning
Neural networks
Spectral correlation
Task analysis
Three dimensional models
Two dimensional models
title Hyperspectral Image Classification With Deep Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T12%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Image%20Classification%20With%20Deep%20Learning%20Models&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Xiaofei&rft.date=2018-09-01&rft.volume=56&rft.issue=9&rft.spage=5408&rft.epage=5423&rft.pages=5408-5423&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2815613&rft_dat=%3Cproquest_RIE%3E2117149376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149376&rft_id=info:pmid/&rft_ieee_id=8340197&rfr_iscdi=true