Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis

Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multi-scale computing systems 2018-10, Vol.4 (4), p.577-592
Hauptverfasser: Zhong, Zhanwei, Li, Zipeng, Chakrabarty, Krishnendu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 4
container_start_page 577
container_title IEEE transactions on multi-scale computing systems
container_volume 4
creator Zhong, Zhanwei
Li, Zipeng
Chakrabarty, Krishnendu
description Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.
doi_str_mv 10.1109/TMSCS.2018.2827030
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8339520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8339520</ieee_id><sourcerecordid>2298376608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEElXpH4CLJc4paztpkmP6AqRWRW05R469Ea5CnNpJUf896UOI0-5hZnbn87xHCkNKIXnZLjeTzZABjYcsZhFwuPF6jHPmR9FodPtvv_cGzu0AgI4AeBT2vDZVom70AYmoFFmbsvTnxv4Iq8jMWmPJGqU5oD0SXZHlbJqSsTbyS9eOjIVDRUxFptbUJTZ-Wup9axqyqtGKRpvKnUM_LCotzzfSSpRHp92Dd1eI0uHgOvve53y2nbz5i9Xr-yRd-DKAsPFjJRkmUc4gLELGci4gwCgqQl6A4pSi4rGMEURXWgaJpHlUFCEGSiUCIQ9533u-5NbW7Ft0TbYzre2ecBljScw7JBB3KnZRSWucs1hktdXfwh4zCtmJcHYmnJ0IZ1fCnenpYtKI-GeIOU9CBvwXVo54Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298376608</pqid></control><display><type>article</type><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</creator><creatorcontrib>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</creatorcontrib><description>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</description><identifier>ISSN: 2332-7766</identifier><identifier>EISSN: 2332-7766</identifier><identifier>DOI: 10.1109/TMSCS.2018.2827030</identifier><identifier>CODEN: ITMCFM</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biochips ; Biosensors ; Computer architecture ; Digital microfluidics ; Droplets ; Error recovery ; micro-electrode-dot-array ; Microelectrodes ; Microfluidics ; predictive analysis ; Real-time systems ; roll-forward technique ; System-on-chip</subject><ispartof>IEEE transactions on multi-scale computing systems, 2018-10, Vol.4 (4), p.577-592</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</citedby><cites>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</cites><orcidid>0000-0002-0946-574X ; 0000-0001-5896-2542 ; 0000-0003-4475-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8339520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8339520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Li, Zipeng</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><title>IEEE transactions on multi-scale computing systems</title><addtitle>TMSCS</addtitle><description>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</description><subject>Biochips</subject><subject>Biosensors</subject><subject>Computer architecture</subject><subject>Digital microfluidics</subject><subject>Droplets</subject><subject>Error recovery</subject><subject>micro-electrode-dot-array</subject><subject>Microelectrodes</subject><subject>Microfluidics</subject><subject>predictive analysis</subject><subject>Real-time systems</subject><subject>roll-forward technique</subject><subject>System-on-chip</subject><issn>2332-7766</issn><issn>2332-7766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhCMEElXpH4CLJc4paztpkmP6AqRWRW05R469Ea5CnNpJUf896UOI0-5hZnbn87xHCkNKIXnZLjeTzZABjYcsZhFwuPF6jHPmR9FodPtvv_cGzu0AgI4AeBT2vDZVom70AYmoFFmbsvTnxv4Iq8jMWmPJGqU5oD0SXZHlbJqSsTbyS9eOjIVDRUxFptbUJTZ-Wup9axqyqtGKRpvKnUM_LCotzzfSSpRHp92Dd1eI0uHgOvve53y2nbz5i9Xr-yRd-DKAsPFjJRkmUc4gLELGci4gwCgqQl6A4pSi4rGMEURXWgaJpHlUFCEGSiUCIQ9533u-5NbW7Ft0TbYzre2ecBljScw7JBB3KnZRSWucs1hktdXfwh4zCtmJcHYmnJ0IZ1fCnenpYtKI-GeIOU9CBvwXVo54Bg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zhong, Zhanwei</creator><creator>Li, Zipeng</creator><creator>Chakrabarty, Krishnendu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0001-5896-2542</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid></search><sort><creationdate>20181001</creationdate><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><author>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochips</topic><topic>Biosensors</topic><topic>Computer architecture</topic><topic>Digital microfluidics</topic><topic>Droplets</topic><topic>Error recovery</topic><topic>micro-electrode-dot-array</topic><topic>Microelectrodes</topic><topic>Microfluidics</topic><topic>predictive analysis</topic><topic>Real-time systems</topic><topic>roll-forward technique</topic><topic>System-on-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Li, Zipeng</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multi-scale computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Zhanwei</au><au>Li, Zipeng</au><au>Chakrabarty, Krishnendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</atitle><jtitle>IEEE transactions on multi-scale computing systems</jtitle><stitle>TMSCS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>4</volume><issue>4</issue><spage>577</spage><epage>592</epage><pages>577-592</pages><issn>2332-7766</issn><eissn>2332-7766</eissn><coden>ITMCFM</coden><abstract>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMSCS.2018.2827030</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0001-5896-2542</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7766
ispartof IEEE transactions on multi-scale computing systems, 2018-10, Vol.4 (4), p.577-592
issn 2332-7766
2332-7766
language eng
recordid cdi_ieee_primary_8339520
source IEEE Electronic Library (IEL)
subjects Biochips
Biosensors
Computer architecture
Digital microfluidics
Droplets
Error recovery
micro-electrode-dot-array
Microelectrodes
Microfluidics
predictive analysis
Real-time systems
roll-forward technique
System-on-chip
title Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20and%20Roll-Forward%20Error%20Recovery%20in%20MEDA%20Biochips%20Based%20on%20Droplet-Aliquot%20Operations%20and%20Predictive%20Analysis&rft.jtitle=IEEE%20transactions%20on%20multi-scale%20computing%20systems&rft.au=Zhong,%20Zhanwei&rft.date=2018-10-01&rft.volume=4&rft.issue=4&rft.spage=577&rft.epage=592&rft.pages=577-592&rft.issn=2332-7766&rft.eissn=2332-7766&rft.coden=ITMCFM&rft_id=info:doi/10.1109/TMSCS.2018.2827030&rft_dat=%3Cproquest_RIE%3E2298376608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298376608&rft_id=info:pmid/&rft_ieee_id=8339520&rfr_iscdi=true