Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis
Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multi-scale computing systems 2018-10, Vol.4 (4), p.577-592 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 592 |
---|---|
container_issue | 4 |
container_start_page | 577 |
container_title | IEEE transactions on multi-scale computing systems |
container_volume | 4 |
creator | Zhong, Zhanwei Li, Zipeng Chakrabarty, Krishnendu |
description | Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy. |
doi_str_mv | 10.1109/TMSCS.2018.2827030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8339520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8339520</ieee_id><sourcerecordid>2298376608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEElXpH4CLJc4paztpkmP6AqRWRW05R469Ea5CnNpJUf896UOI0-5hZnbn87xHCkNKIXnZLjeTzZABjYcsZhFwuPF6jHPmR9FodPtvv_cGzu0AgI4AeBT2vDZVom70AYmoFFmbsvTnxv4Iq8jMWmPJGqU5oD0SXZHlbJqSsTbyS9eOjIVDRUxFptbUJTZ-Wup9axqyqtGKRpvKnUM_LCotzzfSSpRHp92Dd1eI0uHgOvve53y2nbz5i9Xr-yRd-DKAsPFjJRkmUc4gLELGci4gwCgqQl6A4pSi4rGMEURXWgaJpHlUFCEGSiUCIQ9533u-5NbW7Ft0TbYzre2ecBljScw7JBB3KnZRSWucs1hktdXfwh4zCtmJcHYmnJ0IZ1fCnenpYtKI-GeIOU9CBvwXVo54Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298376608</pqid></control><display><type>article</type><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</creator><creatorcontrib>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</creatorcontrib><description>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</description><identifier>ISSN: 2332-7766</identifier><identifier>EISSN: 2332-7766</identifier><identifier>DOI: 10.1109/TMSCS.2018.2827030</identifier><identifier>CODEN: ITMCFM</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biochips ; Biosensors ; Computer architecture ; Digital microfluidics ; Droplets ; Error recovery ; micro-electrode-dot-array ; Microelectrodes ; Microfluidics ; predictive analysis ; Real-time systems ; roll-forward technique ; System-on-chip</subject><ispartof>IEEE transactions on multi-scale computing systems, 2018-10, Vol.4 (4), p.577-592</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</citedby><cites>FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</cites><orcidid>0000-0002-0946-574X ; 0000-0001-5896-2542 ; 0000-0003-4475-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8339520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8339520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Li, Zipeng</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><title>IEEE transactions on multi-scale computing systems</title><addtitle>TMSCS</addtitle><description>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</description><subject>Biochips</subject><subject>Biosensors</subject><subject>Computer architecture</subject><subject>Digital microfluidics</subject><subject>Droplets</subject><subject>Error recovery</subject><subject>micro-electrode-dot-array</subject><subject>Microelectrodes</subject><subject>Microfluidics</subject><subject>predictive analysis</subject><subject>Real-time systems</subject><subject>roll-forward technique</subject><subject>System-on-chip</subject><issn>2332-7766</issn><issn>2332-7766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhCMEElXpH4CLJc4paztpkmP6AqRWRW05R469Ea5CnNpJUf896UOI0-5hZnbn87xHCkNKIXnZLjeTzZABjYcsZhFwuPF6jHPmR9FodPtvv_cGzu0AgI4AeBT2vDZVom70AYmoFFmbsvTnxv4Iq8jMWmPJGqU5oD0SXZHlbJqSsTbyS9eOjIVDRUxFptbUJTZ-Wup9axqyqtGKRpvKnUM_LCotzzfSSpRHp92Dd1eI0uHgOvve53y2nbz5i9Xr-yRd-DKAsPFjJRkmUc4gLELGci4gwCgqQl6A4pSi4rGMEURXWgaJpHlUFCEGSiUCIQ9533u-5NbW7Ft0TbYzre2ecBljScw7JBB3KnZRSWucs1hktdXfwh4zCtmJcHYmnJ0IZ1fCnenpYtKI-GeIOU9CBvwXVo54Bg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Zhong, Zhanwei</creator><creator>Li, Zipeng</creator><creator>Chakrabarty, Krishnendu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0001-5896-2542</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid></search><sort><creationdate>20181001</creationdate><title>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</title><author>Zhong, Zhanwei ; Li, Zipeng ; Chakrabarty, Krishnendu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8dc2e97b205f522b3a04e77f53f0d311ed38c8e0a270c49c1b7ff5e4dd9ae0b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochips</topic><topic>Biosensors</topic><topic>Computer architecture</topic><topic>Digital microfluidics</topic><topic>Droplets</topic><topic>Error recovery</topic><topic>micro-electrode-dot-array</topic><topic>Microelectrodes</topic><topic>Microfluidics</topic><topic>predictive analysis</topic><topic>Real-time systems</topic><topic>roll-forward technique</topic><topic>System-on-chip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zhanwei</creatorcontrib><creatorcontrib>Li, Zipeng</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multi-scale computing systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhong, Zhanwei</au><au>Li, Zipeng</au><au>Chakrabarty, Krishnendu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis</atitle><jtitle>IEEE transactions on multi-scale computing systems</jtitle><stitle>TMSCS</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>4</volume><issue>4</issue><spage>577</spage><epage>592</epage><pages>577-592</pages><issn>2332-7766</issn><eissn>2332-7766</eissn><coden>ITMCFM</coden><abstract>Digital microfluidic biochips (DMFBs) are being increasingly used in biochemistry labs for automating bioassays. However, traditional DMFBs suffer from some key shortcomings: 1) inability to vary droplet volume in a flexible manner; 2) difficulty of integrating on-chip sensors; and 3) the need for special fabrication processes. To overcome these problems, DMFBs based on micro-electrode-dot -array (MEDA) have recently been proposed. However, errors are likely to occur on a MEDA DMFB due to chip defects and the unpredictability inherent to biochemical experiments. We present fine-grained error-recovery solutions for MEDA by exploiting real-time sensing and advanced MEDA-specific droplet operations. The proposed methods rely on adaptive droplet-aliquot operations and predictive analysis of mixing. In addition, a roll-forward error-recovery method is proposed to efficiently utilize the unused part of the biochip and reduce the time required for error recovery. Experimental results on three representative benchmarks demonstrate the efficiency of the proposed error-recovery strategy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMSCS.2018.2827030</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0946-574X</orcidid><orcidid>https://orcid.org/0000-0001-5896-2542</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7766 |
ispartof | IEEE transactions on multi-scale computing systems, 2018-10, Vol.4 (4), p.577-592 |
issn | 2332-7766 2332-7766 |
language | eng |
recordid | cdi_ieee_primary_8339520 |
source | IEEE Electronic Library (IEL) |
subjects | Biochips Biosensors Computer architecture Digital microfluidics Droplets Error recovery micro-electrode-dot-array Microelectrodes Microfluidics predictive analysis Real-time systems roll-forward technique System-on-chip |
title | Adaptive and Roll-Forward Error Recovery in MEDA Biochips Based on Droplet-Aliquot Operations and Predictive Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20and%20Roll-Forward%20Error%20Recovery%20in%20MEDA%20Biochips%20Based%20on%20Droplet-Aliquot%20Operations%20and%20Predictive%20Analysis&rft.jtitle=IEEE%20transactions%20on%20multi-scale%20computing%20systems&rft.au=Zhong,%20Zhanwei&rft.date=2018-10-01&rft.volume=4&rft.issue=4&rft.spage=577&rft.epage=592&rft.pages=577-592&rft.issn=2332-7766&rft.eissn=2332-7766&rft.coden=ITMCFM&rft_id=info:doi/10.1109/TMSCS.2018.2827030&rft_dat=%3Cproquest_RIE%3E2298376608%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298376608&rft_id=info:pmid/&rft_ieee_id=8339520&rfr_iscdi=true |