Visual Kinship Recognition of Families in the Wild
We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of 1,000 family trees with 4-to-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend FIW, we further improved upon this proc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2018-11, Vol.40 (11), p.2624-2637 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2637 |
---|---|
container_issue | 11 |
container_start_page | 2624 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 40 |
creator | Robinson, Joseph P. Shao, Ming Wu, Yue Liu, Hongfu Gillis, Timothy Fu, Yun |
description | We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of 1,000 family trees with 4-to-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend FIW, we further improved upon this process with a novel semi-automatic labeling scheme that used annotated faces and unlabeled text metadata to discover labels, which were then used, along with existing FIW data, for the proposed clustering algorithm that generated label proposals for all newly added data-both processes are shared and compared in depth, showing great savings in time and human input required. Essentially, the clustering algorithm proposed is semi-supervised and uses labeled data to produce more accurate clusters. We statistically compare FIW to related datasets, which unarguably shows enormous gains in overall size and amount of information encapsulated in the labels. We benchmark two tasks, kinship verification and family classification, at scales incomparably larger than ever before. Pre-trained CNN models fine-tuned on FIW outscores other conventional methods and achieved state-of-the art on the renowned KinWild datasets. We also measure human performance on kinship recognition and compare to a fine-tuned CNN. |
doi_str_mv | 10.1109/TPAMI.2018.2826549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8337841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8337841</ieee_id><sourcerecordid>2068342325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-2179014fcfc0cab8921d6226991f3cafd76db2799d2facf9368cd4fb417c8d143</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EoqXwB0BCkVhYUnznxLFHVFGoKAKhAqOVODZ1lY8SJwP_npSWDkw33PO-d3oIOQc6BqDyZvFy-zQbIwUxRoE8juQBGYJkMmQxk4dkSIFjKASKATnxfkUpRDFlx2SAUvYY5UOC7853aRE8usov3Tp4Nbr-rFzr6iqobTBNS1c44wNXBe3SBB-uyE_JkU0Lb852c0TepneLyUM4f76fTW7noWYxtCFCIvuDVltNdZoJiZBzRC4lWKZTmyc8zzCRMkebaisZFzqPbBZBokUOERuR623vuqm_OuNbVTqvTVGklak7r5BywSJkGPfo1T90VXdN1X-nECABEfe-egq3lG5q7xtj1bpxZdp8K6BqY1T9GlUbo2pntA9d7qq7rDT5PvKnsAcutoAzxuzXgrFERMB-AN0NeCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117185109</pqid></control><display><type>article</type><title>Visual Kinship Recognition of Families in the Wild</title><source>IEEE Xplore</source><creator>Robinson, Joseph P. ; Shao, Ming ; Wu, Yue ; Liu, Hongfu ; Gillis, Timothy ; Fu, Yun</creator><creatorcontrib>Robinson, Joseph P. ; Shao, Ming ; Wu, Yue ; Liu, Hongfu ; Gillis, Timothy ; Fu, Yun</creatorcontrib><description>We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of 1,000 family trees with 4-to-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend FIW, we further improved upon this process with a novel semi-automatic labeling scheme that used annotated faces and unlabeled text metadata to discover labels, which were then used, along with existing FIW data, for the proposed clustering algorithm that generated label proposals for all newly added data-both processes are shared and compared in depth, showing great savings in time and human input required. Essentially, the clustering algorithm proposed is semi-supervised and uses labeled data to produce more accurate clusters. We statistically compare FIW to related datasets, which unarguably shows enormous gains in overall size and amount of information encapsulated in the labels. We benchmark two tasks, kinship verification and family classification, at scales incomparably larger than ever before. Pre-trained CNN models fine-tuned on FIW outscores other conventional methods and achieved state-of-the art on the renowned KinWild datasets. We also measure human performance on kinship recognition and compare to a fine-tuned CNN.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2826549</identifier><identifier>PMID: 29993906</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Benchmark testing ; Clustering ; Datasets ; deep learning ; Face recognition ; family classification ; Family trees ; Human performance ; kinship verification ; Labeling ; Labelling ; Labels ; Large-scale image dataset ; Machine learning ; Recognition ; semi-supervised clustering ; Task analysis ; Visualization ; Workflow</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2018-11, Vol.40 (11), p.2624-2637</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-2179014fcfc0cab8921d6226991f3cafd76db2799d2facf9368cd4fb417c8d143</citedby><cites>FETCH-LOGICAL-c351t-2179014fcfc0cab8921d6226991f3cafd76db2799d2facf9368cd4fb417c8d143</cites><orcidid>0000-0001-7699-2104 ; 0000-0002-0821-8640 ; 0000-0002-7686-8784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8337841$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8337841$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29993906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Joseph P.</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Liu, Hongfu</creatorcontrib><creatorcontrib>Gillis, Timothy</creatorcontrib><creatorcontrib>Fu, Yun</creatorcontrib><title>Visual Kinship Recognition of Families in the Wild</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of 1,000 family trees with 4-to-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend FIW, we further improved upon this process with a novel semi-automatic labeling scheme that used annotated faces and unlabeled text metadata to discover labels, which were then used, along with existing FIW data, for the proposed clustering algorithm that generated label proposals for all newly added data-both processes are shared and compared in depth, showing great savings in time and human input required. Essentially, the clustering algorithm proposed is semi-supervised and uses labeled data to produce more accurate clusters. We statistically compare FIW to related datasets, which unarguably shows enormous gains in overall size and amount of information encapsulated in the labels. We benchmark two tasks, kinship verification and family classification, at scales incomparably larger than ever before. Pre-trained CNN models fine-tuned on FIW outscores other conventional methods and achieved state-of-the art on the renowned KinWild datasets. We also measure human performance on kinship recognition and compare to a fine-tuned CNN.</description><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>Clustering</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Face recognition</subject><subject>family classification</subject><subject>Family trees</subject><subject>Human performance</subject><subject>kinship verification</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Labels</subject><subject>Large-scale image dataset</subject><subject>Machine learning</subject><subject>Recognition</subject><subject>semi-supervised clustering</subject><subject>Task analysis</subject><subject>Visualization</subject><subject>Workflow</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EoqXwB0BCkVhYUnznxLFHVFGoKAKhAqOVODZ1lY8SJwP_npSWDkw33PO-d3oIOQc6BqDyZvFy-zQbIwUxRoE8juQBGYJkMmQxk4dkSIFjKASKATnxfkUpRDFlx2SAUvYY5UOC7853aRE8usov3Tp4Nbr-rFzr6iqobTBNS1c44wNXBe3SBB-uyE_JkU0Lb852c0TepneLyUM4f76fTW7noWYxtCFCIvuDVltNdZoJiZBzRC4lWKZTmyc8zzCRMkebaisZFzqPbBZBokUOERuR623vuqm_OuNbVTqvTVGklak7r5BywSJkGPfo1T90VXdN1X-nECABEfe-egq3lG5q7xtj1bpxZdp8K6BqY1T9GlUbo2pntA9d7qq7rDT5PvKnsAcutoAzxuzXgrFERMB-AN0NeCw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Robinson, Joseph P.</creator><creator>Shao, Ming</creator><creator>Wu, Yue</creator><creator>Liu, Hongfu</creator><creator>Gillis, Timothy</creator><creator>Fu, Yun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7699-2104</orcidid><orcidid>https://orcid.org/0000-0002-0821-8640</orcidid><orcidid>https://orcid.org/0000-0002-7686-8784</orcidid></search><sort><creationdate>20181101</creationdate><title>Visual Kinship Recognition of Families in the Wild</title><author>Robinson, Joseph P. ; Shao, Ming ; Wu, Yue ; Liu, Hongfu ; Gillis, Timothy ; Fu, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-2179014fcfc0cab8921d6226991f3cafd76db2799d2facf9368cd4fb417c8d143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>Clustering</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Face recognition</topic><topic>family classification</topic><topic>Family trees</topic><topic>Human performance</topic><topic>kinship verification</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Labels</topic><topic>Large-scale image dataset</topic><topic>Machine learning</topic><topic>Recognition</topic><topic>semi-supervised clustering</topic><topic>Task analysis</topic><topic>Visualization</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Joseph P.</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Liu, Hongfu</creatorcontrib><creatorcontrib>Gillis, Timothy</creatorcontrib><creatorcontrib>Fu, Yun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robinson, Joseph P.</au><au>Shao, Ming</au><au>Wu, Yue</au><au>Liu, Hongfu</au><au>Gillis, Timothy</au><au>Fu, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Kinship Recognition of Families in the Wild</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>40</volume><issue>11</issue><spage>2624</spage><epage>2637</epage><pages>2624-2637</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of 1,000 family trees with 4-to-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend FIW, we further improved upon this process with a novel semi-automatic labeling scheme that used annotated faces and unlabeled text metadata to discover labels, which were then used, along with existing FIW data, for the proposed clustering algorithm that generated label proposals for all newly added data-both processes are shared and compared in depth, showing great savings in time and human input required. Essentially, the clustering algorithm proposed is semi-supervised and uses labeled data to produce more accurate clusters. We statistically compare FIW to related datasets, which unarguably shows enormous gains in overall size and amount of information encapsulated in the labels. We benchmark two tasks, kinship verification and family classification, at scales incomparably larger than ever before. Pre-trained CNN models fine-tuned on FIW outscores other conventional methods and achieved state-of-the art on the renowned KinWild datasets. We also measure human performance on kinship recognition and compare to a fine-tuned CNN.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29993906</pmid><doi>10.1109/TPAMI.2018.2826549</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7699-2104</orcidid><orcidid>https://orcid.org/0000-0002-0821-8640</orcidid><orcidid>https://orcid.org/0000-0002-7686-8784</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2018-11, Vol.40 (11), p.2624-2637 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_ieee_primary_8337841 |
source | IEEE Xplore |
subjects | Algorithms Benchmark testing Clustering Datasets deep learning Face recognition family classification Family trees Human performance kinship verification Labeling Labelling Labels Large-scale image dataset Machine learning Recognition semi-supervised clustering Task analysis Visualization Workflow |
title | Visual Kinship Recognition of Families in the Wild |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Kinship%20Recognition%20of%20Families%20in%20the%20Wild&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Robinson,%20Joseph%20P.&rft.date=2018-11-01&rft.volume=40&rft.issue=11&rft.spage=2624&rft.epage=2637&rft.pages=2624-2637&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2826549&rft_dat=%3Cproquest_RIE%3E2068342325%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117185109&rft_id=info:pmid/29993906&rft_ieee_id=8337841&rfr_iscdi=true |