Partial, noisy and qualitative models for adaptive critic based neurocontrol

The roles of plant models in adaptive critic methods for approximate dynamic programming are considered, with primary focus given to the dynamic heuristic programming (DHP) methodology. For complete system identification, partial, approximate, and qualitative models of plant dynamics are considered....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shannon, T.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2275 vol.4
container_issue
container_start_page 2271
container_title
container_volume 4
creator Shannon, T.T.
description The roles of plant models in adaptive critic methods for approximate dynamic programming are considered, with primary focus given to the dynamic heuristic programming (DHP) methodology. For complete system identification, partial, approximate, and qualitative models of plant dynamics are considered. Such models are found to be sufficient for successful controller design. As classification is in general easier than regression, the results for qualitative models suggest an avenue for simplifying ongoing system identification in adaptive control applications.
doi_str_mv 10.1109/IJCNN.1999.833416
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_833416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>833416</ieee_id><sourcerecordid>833416</sourcerecordid><originalsourceid>FETCH-ieee_primary_8334163</originalsourceid><addsrcrecordid>eNp9jksKwjAUAIMf8HsAXeUAtr40pm3WoqiIuHBfnm2ESGw0iYK3V9S1q4GZzRAyYhAzBnK63sx3u5hJKeOc8xlLG6TLhMgjLiFpkh5kOXAhEpm23gFkHmUiSzuk5_0ZIIVsJrtku0cXNJoJra32T4p1RW93NDpg0A9FL7ZSxtOTdRQrvH5c6XTQJT2iVxWt1d3Z0tbBWTMg7RMar4Y_9sl4uTjMV5FWShVXpy_onsV3lv-NL2t2QKM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Partial, noisy and qualitative models for adaptive critic based neurocontrol</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shannon, T.T.</creator><creatorcontrib>Shannon, T.T.</creatorcontrib><description>The roles of plant models in adaptive critic methods for approximate dynamic programming are considered, with primary focus given to the dynamic heuristic programming (DHP) methodology. For complete system identification, partial, approximate, and qualitative models of plant dynamics are considered. Such models are found to be sufficient for successful controller design. As classification is in general easier than regression, the results for qualitative models suggest an avenue for simplifying ongoing system identification in adaptive control applications.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.833416</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Control systems ; Costs ; Dynamic programming ; Functional programming ; Optimal control ; Programmable control ; State estimation ; System identification ; Utility programs</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.4, p.2271-2275 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/833416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/833416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shannon, T.T.</creatorcontrib><title>Partial, noisy and qualitative models for adaptive critic based neurocontrol</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>The roles of plant models in adaptive critic methods for approximate dynamic programming are considered, with primary focus given to the dynamic heuristic programming (DHP) methodology. For complete system identification, partial, approximate, and qualitative models of plant dynamics are considered. Such models are found to be sufficient for successful controller design. As classification is in general easier than regression, the results for qualitative models suggest an avenue for simplifying ongoing system identification in adaptive control applications.</description><subject>Adaptive control</subject><subject>Control systems</subject><subject>Costs</subject><subject>Dynamic programming</subject><subject>Functional programming</subject><subject>Optimal control</subject><subject>Programmable control</subject><subject>State estimation</subject><subject>System identification</subject><subject>Utility programs</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jksKwjAUAIMf8HsAXeUAtr40pm3WoqiIuHBfnm2ESGw0iYK3V9S1q4GZzRAyYhAzBnK63sx3u5hJKeOc8xlLG6TLhMgjLiFpkh5kOXAhEpm23gFkHmUiSzuk5_0ZIIVsJrtku0cXNJoJra32T4p1RW93NDpg0A9FL7ZSxtOTdRQrvH5c6XTQJT2iVxWt1d3Z0tbBWTMg7RMar4Y_9sl4uTjMV5FWShVXpy_onsV3lv-NL2t2QKM</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Shannon, T.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Partial, noisy and qualitative models for adaptive critic based neurocontrol</title><author>Shannon, T.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8334163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptive control</topic><topic>Control systems</topic><topic>Costs</topic><topic>Dynamic programming</topic><topic>Functional programming</topic><topic>Optimal control</topic><topic>Programmable control</topic><topic>State estimation</topic><topic>System identification</topic><topic>Utility programs</topic><toplevel>online_resources</toplevel><creatorcontrib>Shannon, T.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shannon, T.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Partial, noisy and qualitative models for adaptive critic based neurocontrol</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>4</volume><spage>2271</spage><epage>2275 vol.4</epage><pages>2271-2275 vol.4</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>The roles of plant models in adaptive critic methods for approximate dynamic programming are considered, with primary focus given to the dynamic heuristic programming (DHP) methodology. For complete system identification, partial, approximate, and qualitative models of plant dynamics are considered. Such models are found to be sufficient for successful controller design. As classification is in general easier than regression, the results for qualitative models suggest an avenue for simplifying ongoing system identification in adaptive control applications.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.833416</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.4, p.2271-2275 vol.4
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_833416
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Control systems
Costs
Dynamic programming
Functional programming
Optimal control
Programmable control
State estimation
System identification
Utility programs
title Partial, noisy and qualitative models for adaptive critic based neurocontrol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Partial,%20noisy%20and%20qualitative%20models%20for%20adaptive%20critic%20based%20neurocontrol&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Shannon,%20T.T.&rft.date=1999&rft.volume=4&rft.spage=2271&rft.epage=2275%20vol.4&rft.pages=2271-2275%20vol.4&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.833416&rft_dat=%3Cieee_6IE%3E833416%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=833416&rfr_iscdi=true