QRS fragmentation index as a new discriminator for early diagnosis of heart diseases

In the past few years, the presence of fragmentation in the QRS complex has been demonstrated to be related to diseases such as myocardial fibrosis, cardiac sarcoidosis, arrythmogenic cardiopathies, acute coronary syndrome, and Brugada syndrome, among others. The detection of fragmentation in the QR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Melgarejo-Meseguer, Francisco-Manuel, Salar-Alcaraz, Mariela, Molins-Bordallo, Zaida, Gimeno-Blanes, Francisco-Javier, Everss-Villalba, Estrella, Flores-Yepes, Jose-Antonio, Rojo-Alvarez, Jose Luis, Garcia-Alberola, Arcadi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Melgarejo-Meseguer, Francisco-Manuel
Salar-Alcaraz, Mariela
Molins-Bordallo, Zaida
Gimeno-Blanes, Francisco-Javier
Everss-Villalba, Estrella
Flores-Yepes, Jose-Antonio
Rojo-Alvarez, Jose Luis
Garcia-Alberola, Arcadi
description In the past few years, the presence of fragmentation in the QRS complex has been demonstrated to be related to diseases such as myocardial fibrosis, cardiac sarcoidosis, arrythmogenic cardiopathies, acute coronary syndrome, and Brugada syndrome, among others. The detection of fragmentation in the QRS is usually carried out manually, which represents a subjective pattern recognition task that demands an effort by the clinician, increasing with the number of patients. These problems have made the process of fragmentation detection a good candidate to its automatization. In this work, we used a database with over six-thousand 12-lead ECG from Hospital Virgen de la Arrixaca de Murcia (Spain), which where digitally recorded with GE MAC5000. Affected and non-affected patients records were extracted for computerized analysis. Clinical supervision was performed for gold-standard development and for signal classification. Fragmentation detection algorithms were developed using first and second derivatives calculation in the pre-qualified segments of the signal, after fiducial point detection. The obtained results were 96.88% sensitivity, 72.92% specificity, and 82.50% accuracy. These results confirm that it is possible to automatically detect fragmentation, constituting a relevant tool to pre-qualify patients for further diagnostic-tests, and it also opens new opportunities for computerized diagnosis.
doi_str_mv 10.22489/CinC.2017.267-258
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_8331668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8331668</ieee_id><sourcerecordid>8331668</sourcerecordid><originalsourceid>FETCH-LOGICAL-i219t-b55489a681d8df87dab3a04c4813c7da66575e2eb24b8221df5674c0715202493</originalsourceid><addsrcrecordid>eNotTttKAzEUjIJgrf0BfckPbE1ObmcfZfEGBVEr-FbObrI10mZls6D9eyM6MAwzDMMwdiHFEkBjfdXE1CxBSLcE6yoweMTOpFForVUCj9kMFJgK0b2dskXOH6LAOKwtztj66fmF9yNt9yFNNMUh8Zh8-OaUOfEUvriPuRvjPiaahpH3hYHG3aHktE1DjpkPPX8v2fRbDZRDPmcnPe1yWPzrnL3e3qyb-2r1ePfQXK-qCLKeqtaYcp8sSo--R-epVSR0p1GqrjhrjTMBQgu6RQDpe2Od7oSTBgToWs3Z5d9uDCFsPstLGg8bVEpai-oHa15Qwg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>QRS fragmentation index as a new discriminator for early diagnosis of heart diseases</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Melgarejo-Meseguer, Francisco-Manuel ; Salar-Alcaraz, Mariela ; Molins-Bordallo, Zaida ; Gimeno-Blanes, Francisco-Javier ; Everss-Villalba, Estrella ; Flores-Yepes, Jose-Antonio ; Rojo-Alvarez, Jose Luis ; Garcia-Alberola, Arcadi</creator><creatorcontrib>Melgarejo-Meseguer, Francisco-Manuel ; Salar-Alcaraz, Mariela ; Molins-Bordallo, Zaida ; Gimeno-Blanes, Francisco-Javier ; Everss-Villalba, Estrella ; Flores-Yepes, Jose-Antonio ; Rojo-Alvarez, Jose Luis ; Garcia-Alberola, Arcadi</creatorcontrib><description>In the past few years, the presence of fragmentation in the QRS complex has been demonstrated to be related to diseases such as myocardial fibrosis, cardiac sarcoidosis, arrythmogenic cardiopathies, acute coronary syndrome, and Brugada syndrome, among others. The detection of fragmentation in the QRS is usually carried out manually, which represents a subjective pattern recognition task that demands an effort by the clinician, increasing with the number of patients. These problems have made the process of fragmentation detection a good candidate to its automatization. In this work, we used a database with over six-thousand 12-lead ECG from Hospital Virgen de la Arrixaca de Murcia (Spain), which where digitally recorded with GE MAC5000. Affected and non-affected patients records were extracted for computerized analysis. Clinical supervision was performed for gold-standard development and for signal classification. Fragmentation detection algorithms were developed using first and second derivatives calculation in the pre-qualified segments of the signal, after fiducial point detection. The obtained results were 96.88% sensitivity, 72.92% specificity, and 82.50% accuracy. These results confirm that it is possible to automatically detect fragmentation, constituting a relevant tool to pre-qualify patients for further diagnostic-tests, and it also opens new opportunities for computerized diagnosis.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 1538666308</identifier><identifier>EISBN: 9781538666302</identifier><identifier>DOI: 10.22489/CinC.2017.267-258</identifier><language>eng</language><publisher>CCAL</publisher><subject>Detectors ; Diseases ; Electrocardiography ; Heart ; Indexes ; Myocardium</subject><ispartof>2017 Computing in Cardiology (CinC), 2017, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925</link.rule.ids></links><search><creatorcontrib>Melgarejo-Meseguer, Francisco-Manuel</creatorcontrib><creatorcontrib>Salar-Alcaraz, Mariela</creatorcontrib><creatorcontrib>Molins-Bordallo, Zaida</creatorcontrib><creatorcontrib>Gimeno-Blanes, Francisco-Javier</creatorcontrib><creatorcontrib>Everss-Villalba, Estrella</creatorcontrib><creatorcontrib>Flores-Yepes, Jose-Antonio</creatorcontrib><creatorcontrib>Rojo-Alvarez, Jose Luis</creatorcontrib><creatorcontrib>Garcia-Alberola, Arcadi</creatorcontrib><title>QRS fragmentation index as a new discriminator for early diagnosis of heart diseases</title><title>2017 Computing in Cardiology (CinC)</title><addtitle>CIC</addtitle><description>In the past few years, the presence of fragmentation in the QRS complex has been demonstrated to be related to diseases such as myocardial fibrosis, cardiac sarcoidosis, arrythmogenic cardiopathies, acute coronary syndrome, and Brugada syndrome, among others. The detection of fragmentation in the QRS is usually carried out manually, which represents a subjective pattern recognition task that demands an effort by the clinician, increasing with the number of patients. These problems have made the process of fragmentation detection a good candidate to its automatization. In this work, we used a database with over six-thousand 12-lead ECG from Hospital Virgen de la Arrixaca de Murcia (Spain), which where digitally recorded with GE MAC5000. Affected and non-affected patients records were extracted for computerized analysis. Clinical supervision was performed for gold-standard development and for signal classification. Fragmentation detection algorithms were developed using first and second derivatives calculation in the pre-qualified segments of the signal, after fiducial point detection. The obtained results were 96.88% sensitivity, 72.92% specificity, and 82.50% accuracy. These results confirm that it is possible to automatically detect fragmentation, constituting a relevant tool to pre-qualify patients for further diagnostic-tests, and it also opens new opportunities for computerized diagnosis.</description><subject>Detectors</subject><subject>Diseases</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>Indexes</subject><subject>Myocardium</subject><issn>2325-887X</issn><isbn>1538666308</isbn><isbn>9781538666302</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotTttKAzEUjIJgrf0BfckPbE1ObmcfZfEGBVEr-FbObrI10mZls6D9eyM6MAwzDMMwdiHFEkBjfdXE1CxBSLcE6yoweMTOpFForVUCj9kMFJgK0b2dskXOH6LAOKwtztj66fmF9yNt9yFNNMUh8Zh8-OaUOfEUvriPuRvjPiaahpH3hYHG3aHktE1DjpkPPX8v2fRbDZRDPmcnPe1yWPzrnL3e3qyb-2r1ePfQXK-qCLKeqtaYcp8sSo--R-epVSR0p1GqrjhrjTMBQgu6RQDpe2Od7oSTBgToWs3Z5d9uDCFsPstLGg8bVEpai-oHa15Qwg</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Melgarejo-Meseguer, Francisco-Manuel</creator><creator>Salar-Alcaraz, Mariela</creator><creator>Molins-Bordallo, Zaida</creator><creator>Gimeno-Blanes, Francisco-Javier</creator><creator>Everss-Villalba, Estrella</creator><creator>Flores-Yepes, Jose-Antonio</creator><creator>Rojo-Alvarez, Jose Luis</creator><creator>Garcia-Alberola, Arcadi</creator><general>CCAL</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201709</creationdate><title>QRS fragmentation index as a new discriminator for early diagnosis of heart diseases</title><author>Melgarejo-Meseguer, Francisco-Manuel ; Salar-Alcaraz, Mariela ; Molins-Bordallo, Zaida ; Gimeno-Blanes, Francisco-Javier ; Everss-Villalba, Estrella ; Flores-Yepes, Jose-Antonio ; Rojo-Alvarez, Jose Luis ; Garcia-Alberola, Arcadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i219t-b55489a681d8df87dab3a04c4813c7da66575e2eb24b8221df5674c0715202493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Detectors</topic><topic>Diseases</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>Indexes</topic><topic>Myocardium</topic><toplevel>online_resources</toplevel><creatorcontrib>Melgarejo-Meseguer, Francisco-Manuel</creatorcontrib><creatorcontrib>Salar-Alcaraz, Mariela</creatorcontrib><creatorcontrib>Molins-Bordallo, Zaida</creatorcontrib><creatorcontrib>Gimeno-Blanes, Francisco-Javier</creatorcontrib><creatorcontrib>Everss-Villalba, Estrella</creatorcontrib><creatorcontrib>Flores-Yepes, Jose-Antonio</creatorcontrib><creatorcontrib>Rojo-Alvarez, Jose Luis</creatorcontrib><creatorcontrib>Garcia-Alberola, Arcadi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melgarejo-Meseguer, Francisco-Manuel</au><au>Salar-Alcaraz, Mariela</au><au>Molins-Bordallo, Zaida</au><au>Gimeno-Blanes, Francisco-Javier</au><au>Everss-Villalba, Estrella</au><au>Flores-Yepes, Jose-Antonio</au><au>Rojo-Alvarez, Jose Luis</au><au>Garcia-Alberola, Arcadi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>QRS fragmentation index as a new discriminator for early diagnosis of heart diseases</atitle><btitle>2017 Computing in Cardiology (CinC)</btitle><stitle>CIC</stitle><date>2017-09</date><risdate>2017</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>1538666308</eisbn><eisbn>9781538666302</eisbn><abstract>In the past few years, the presence of fragmentation in the QRS complex has been demonstrated to be related to diseases such as myocardial fibrosis, cardiac sarcoidosis, arrythmogenic cardiopathies, acute coronary syndrome, and Brugada syndrome, among others. The detection of fragmentation in the QRS is usually carried out manually, which represents a subjective pattern recognition task that demands an effort by the clinician, increasing with the number of patients. These problems have made the process of fragmentation detection a good candidate to its automatization. In this work, we used a database with over six-thousand 12-lead ECG from Hospital Virgen de la Arrixaca de Murcia (Spain), which where digitally recorded with GE MAC5000. Affected and non-affected patients records were extracted for computerized analysis. Clinical supervision was performed for gold-standard development and for signal classification. Fragmentation detection algorithms were developed using first and second derivatives calculation in the pre-qualified segments of the signal, after fiducial point detection. The obtained results were 96.88% sensitivity, 72.92% specificity, and 82.50% accuracy. These results confirm that it is possible to automatically detect fragmentation, constituting a relevant tool to pre-qualify patients for further diagnostic-tests, and it also opens new opportunities for computerized diagnosis.</abstract><pub>CCAL</pub><doi>10.22489/CinC.2017.267-258</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2017 Computing in Cardiology (CinC), 2017, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_8331668
source EZB-FREE-00999 freely available EZB journals
subjects Detectors
Diseases
Electrocardiography
Heart
Indexes
Myocardium
title QRS fragmentation index as a new discriminator for early diagnosis of heart diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=QRS%20fragmentation%20index%20as%20a%20new%20discriminator%20for%20early%20diagnosis%20of%20heart%20diseases&rft.btitle=2017%20Computing%20in%20Cardiology%20(CinC)&rft.au=Melgarejo-Meseguer,%20Francisco-Manuel&rft.date=2017-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2017.267-258&rft_dat=%3Cieee%3E8331668%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=1538666308&rft.eisbn_list=9781538666302&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8331668&rfr_iscdi=true