Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System
This brief investigates the optimal control design for a multimotor driving system (MDS). Since the dynamic characteristic of MDS is multivariable, high order, strong coupling, and nonlinear, it is difficult to design an appropriate control framework to simultaneously achieve the load tracking and m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2019-05, Vol.27 (3), p.1376-1384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1384 |
---|---|
container_issue | 3 |
container_start_page | 1376 |
container_title | IEEE transactions on control systems technology |
container_volume | 27 |
creator | Wang, Minlin Ren, Xuemei Chen, Qiang |
description | This brief investigates the optimal control design for a multimotor driving system (MDS). Since the dynamic characteristic of MDS is multivariable, high order, strong coupling, and nonlinear, it is difficult to design an appropriate control framework to simultaneously achieve the load tracking and multimotor synchronization. By dividing the MDS into a load subsystem and a multimotor subsystem, a novel cascade optimal control framework including outer and inner loops is proposed. In this framework, the optimal-tracking controller (OTC) and the optimal synchronization controller (OSC) can be designed individually by decomposing a comprehensive performance index. In order to construct the OTC, the backstepping approach is incorporated into the optimal control to make the load track a reference command; then, the OSC is developed via the mean deviation coupling control strategy to guarantee that all the motors' states can converge their average value. In addition, the state and extended disturbance observers are combined with OTC and OSC to deal with the immeasurable states and the system uncertainties. The proposed control framework not only addresses the optimal control problems of the load tracking and multimotor synchronization but also has a strong robustness to the system uncertainties. The Lyapunov theory proves that all signals in the closed-loop system are ultimately uniformly bounded. Practical experiments based on a four-motor driving system are conducted to validate the efficiency of the proposed control framework. |
doi_str_mv | 10.1109/TCST.2018.2810273 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8323381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8323381</ieee_id><sourcerecordid>2210034730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8c43f446a95adf661ef32a2211f04b62000c270e96d4c9cc7bb3d76e780ecf03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYp40ccZ4nCUyrqopFYWq5jQ0oaFztFKl-Po1asZhbn3tEchK4JzAiB8q6ulvWMApEzKgnQgp2gCclzmYEU-WnaQbBM5Eyco4sY1wCE57SYoPdKR6Mbixfbod3oDle-H4LvsPMB10Gbr7b_wLpv8HLfm8_g-_ZXD63vsXdY47ddl2J-SPBDaH9GdrmPg91cojOnu2ivjnOK6qfHunrJ5ovn1-p-nhmWl0MmDWeOc6HLXDdOCGIdo5pSQhzwlaAAYGgBthQNN6UxxWrFmkLYQoI1DtgU3R5qt8F_72wc1NrvQp8uqlQCwHjBRoocKBN8jME6tQ3p2bBXBNSoT4361KhPHfWlzM0h01pr_3nJKGOSsD8_2mva</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2210034730</pqid></control><display><type>article</type><title>Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Minlin ; Ren, Xuemei ; Chen, Qiang</creator><creatorcontrib>Wang, Minlin ; Ren, Xuemei ; Chen, Qiang</creatorcontrib><description>This brief investigates the optimal control design for a multimotor driving system (MDS). Since the dynamic characteristic of MDS is multivariable, high order, strong coupling, and nonlinear, it is difficult to design an appropriate control framework to simultaneously achieve the load tracking and multimotor synchronization. By dividing the MDS into a load subsystem and a multimotor subsystem, a novel cascade optimal control framework including outer and inner loops is proposed. In this framework, the optimal-tracking controller (OTC) and the optimal synchronization controller (OSC) can be designed individually by decomposing a comprehensive performance index. In order to construct the OTC, the backstepping approach is incorporated into the optimal control to make the load track a reference command; then, the OSC is developed via the mean deviation coupling control strategy to guarantee that all the motors' states can converge their average value. In addition, the state and extended disturbance observers are combined with OTC and OSC to deal with the immeasurable states and the system uncertainties. The proposed control framework not only addresses the optimal control problems of the load tracking and multimotor synchronization but also has a strong robustness to the system uncertainties. The Lyapunov theory proves that all signals in the closed-loop system are ultimately uniformly bounded. Practical experiments based on a four-motor driving system are conducted to validate the efficiency of the proposed control framework.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2018.2810273</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cascade optimal control (COC) ; Control systems design ; Control theory ; Controllers ; Coupling ; Couplings ; Disturbance observers ; Feedback control ; mean deviation coupling control strategy ; Motors ; multimotor driving system (MDS) ; Optimal control ; Performance analysis ; Performance indices ; Radar tracking ; state and extended disturbance observer (SEDO) ; Subsystems ; Synchronism ; Synchronization ; Synchronous motors ; tracking and synchronization ; Tracking control ; Uncertainty</subject><ispartof>IEEE transactions on control systems technology, 2019-05, Vol.27 (3), p.1376-1384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8c43f446a95adf661ef32a2211f04b62000c270e96d4c9cc7bb3d76e780ecf03</citedby><cites>FETCH-LOGICAL-c359t-8c43f446a95adf661ef32a2211f04b62000c270e96d4c9cc7bb3d76e780ecf03</cites><orcidid>0000-0002-7248-3318 ; 0000-0003-1382-6082 ; 0000-0001-5869-0436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8323381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8323381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Minlin</creatorcontrib><creatorcontrib>Ren, Xuemei</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><title>Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This brief investigates the optimal control design for a multimotor driving system (MDS). Since the dynamic characteristic of MDS is multivariable, high order, strong coupling, and nonlinear, it is difficult to design an appropriate control framework to simultaneously achieve the load tracking and multimotor synchronization. By dividing the MDS into a load subsystem and a multimotor subsystem, a novel cascade optimal control framework including outer and inner loops is proposed. In this framework, the optimal-tracking controller (OTC) and the optimal synchronization controller (OSC) can be designed individually by decomposing a comprehensive performance index. In order to construct the OTC, the backstepping approach is incorporated into the optimal control to make the load track a reference command; then, the OSC is developed via the mean deviation coupling control strategy to guarantee that all the motors' states can converge their average value. In addition, the state and extended disturbance observers are combined with OTC and OSC to deal with the immeasurable states and the system uncertainties. The proposed control framework not only addresses the optimal control problems of the load tracking and multimotor synchronization but also has a strong robustness to the system uncertainties. The Lyapunov theory proves that all signals in the closed-loop system are ultimately uniformly bounded. Practical experiments based on a four-motor driving system are conducted to validate the efficiency of the proposed control framework.</description><subject>Cascade optimal control (COC)</subject><subject>Control systems design</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Disturbance observers</subject><subject>Feedback control</subject><subject>mean deviation coupling control strategy</subject><subject>Motors</subject><subject>multimotor driving system (MDS)</subject><subject>Optimal control</subject><subject>Performance analysis</subject><subject>Performance indices</subject><subject>Radar tracking</subject><subject>state and extended disturbance observer (SEDO)</subject><subject>Subsystems</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Synchronous motors</subject><subject>tracking and synchronization</subject><subject>Tracking control</subject><subject>Uncertainty</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYp40ccZ4nCUyrqopFYWq5jQ0oaFztFKl-Po1asZhbn3tEchK4JzAiB8q6ulvWMApEzKgnQgp2gCclzmYEU-WnaQbBM5Eyco4sY1wCE57SYoPdKR6Mbixfbod3oDle-H4LvsPMB10Gbr7b_wLpv8HLfm8_g-_ZXD63vsXdY47ddl2J-SPBDaH9GdrmPg91cojOnu2ivjnOK6qfHunrJ5ovn1-p-nhmWl0MmDWeOc6HLXDdOCGIdo5pSQhzwlaAAYGgBthQNN6UxxWrFmkLYQoI1DtgU3R5qt8F_72wc1NrvQp8uqlQCwHjBRoocKBN8jME6tQ3p2bBXBNSoT4361KhPHfWlzM0h01pr_3nJKGOSsD8_2mva</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Wang, Minlin</creator><creator>Ren, Xuemei</creator><creator>Chen, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7248-3318</orcidid><orcidid>https://orcid.org/0000-0003-1382-6082</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></search><sort><creationdate>201905</creationdate><title>Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System</title><author>Wang, Minlin ; Ren, Xuemei ; Chen, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8c43f446a95adf661ef32a2211f04b62000c270e96d4c9cc7bb3d76e780ecf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cascade optimal control (COC)</topic><topic>Control systems design</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Disturbance observers</topic><topic>Feedback control</topic><topic>mean deviation coupling control strategy</topic><topic>Motors</topic><topic>multimotor driving system (MDS)</topic><topic>Optimal control</topic><topic>Performance analysis</topic><topic>Performance indices</topic><topic>Radar tracking</topic><topic>state and extended disturbance observer (SEDO)</topic><topic>Subsystems</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Synchronous motors</topic><topic>tracking and synchronization</topic><topic>Tracking control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Minlin</creatorcontrib><creatorcontrib>Ren, Xuemei</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Minlin</au><au>Ren, Xuemei</au><au>Chen, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2019-05</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>1376</spage><epage>1384</epage><pages>1376-1384</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This brief investigates the optimal control design for a multimotor driving system (MDS). Since the dynamic characteristic of MDS is multivariable, high order, strong coupling, and nonlinear, it is difficult to design an appropriate control framework to simultaneously achieve the load tracking and multimotor synchronization. By dividing the MDS into a load subsystem and a multimotor subsystem, a novel cascade optimal control framework including outer and inner loops is proposed. In this framework, the optimal-tracking controller (OTC) and the optimal synchronization controller (OSC) can be designed individually by decomposing a comprehensive performance index. In order to construct the OTC, the backstepping approach is incorporated into the optimal control to make the load track a reference command; then, the OSC is developed via the mean deviation coupling control strategy to guarantee that all the motors' states can converge their average value. In addition, the state and extended disturbance observers are combined with OTC and OSC to deal with the immeasurable states and the system uncertainties. The proposed control framework not only addresses the optimal control problems of the load tracking and multimotor synchronization but also has a strong robustness to the system uncertainties. The Lyapunov theory proves that all signals in the closed-loop system are ultimately uniformly bounded. Practical experiments based on a four-motor driving system are conducted to validate the efficiency of the proposed control framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2018.2810273</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7248-3318</orcidid><orcidid>https://orcid.org/0000-0003-1382-6082</orcidid><orcidid>https://orcid.org/0000-0001-5869-0436</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2019-05, Vol.27 (3), p.1376-1384 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_8323381 |
source | IEEE Electronic Library (IEL) |
subjects | Cascade optimal control (COC) Control systems design Control theory Controllers Coupling Couplings Disturbance observers Feedback control mean deviation coupling control strategy Motors multimotor driving system (MDS) Optimal control Performance analysis Performance indices Radar tracking state and extended disturbance observer (SEDO) Subsystems Synchronism Synchronization Synchronous motors tracking and synchronization Tracking control Uncertainty |
title | Cascade Optimal Control for Tracking and Synchronization of a Multimotor Driving System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascade%20Optimal%20Control%20for%20Tracking%20and%20Synchronization%20of%20a%20Multimotor%20Driving%20System&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Wang,%20Minlin&rft.date=2019-05&rft.volume=27&rft.issue=3&rft.spage=1376&rft.epage=1384&rft.pages=1376-1384&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2018.2810273&rft_dat=%3Cproquest_RIE%3E2210034730%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2210034730&rft_id=info:pmid/&rft_ieee_id=8323381&rfr_iscdi=true |