NVQuery: Efficient Query Processing in Nonvolatile Memory
Today's computing systems use a huge amount of energy and time to process basic queries in database. A large part of it is spent in data movement between the memory and processing cores, owing to the limited cache capacity and memory bandwidth of traditional computers. In this paper, we propose...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2019-04, Vol.38 (4), p.628-639 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 639 |
---|---|
container_issue | 4 |
container_start_page | 628 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 38 |
creator | Imani, Mohsen Gupta, Saransh Sharma, Sahil Rosing, Tajana Simunic |
description | Today's computing systems use a huge amount of energy and time to process basic queries in database. A large part of it is spent in data movement between the memory and processing cores, owing to the limited cache capacity and memory bandwidth of traditional computers. In this paper, we propose a nonvolatile memory-based query accelerator, called NVQuery, which performs several basic query functions in memory including aggregation, prediction, bit-wise operations, join operations, as well as exact and nearest distance search queries. NVQuery is implemented on a content addressable memory and exploits the analog characteristic of nonvolatile memory in order to enable in-memory processing. To implement nearest distance search in memory, we introduce a novel bitline driving scheme to give weights to the indices of the bits during the search operation. To further improve the energy efficiency, our design supports configurable approximation by adaptively putting memory blocks under voltage overscaling. Our experimental evaluation shows that a NVQuery can provide 49.3{\boldsymbol \times } performance speedup and 32.9{\boldsymbol \times } energy savings as compared to running the same query on traditional processor. Approximation improves the energy-delay product (EDP) of NVQuery by 7.3{\boldsymbol \times } , while providing acceptable accuracy. In addition, NVQuery can achieve 30.1{\boldsymbol \times } EDP improvement as compared to the state-of-the-art query accelerators. |
doi_str_mv | 10.1109/TCAD.2018.2819080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8323230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8323230</ieee_id><sourcerecordid>2196838742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-8b22d903ed65d35a87604b78083d73ba0a8c8a0749381af85f9395e1ccd1b8743</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD9-gHhZ8Lx1JtndTLyVWj-gVoXqNWSzWdnSbmqyFfrv3doic3hheN4ZeBi7Qhgigrqdj0f3Qw5IQ06ogOCIDVAJmWaY4zEbAJeUAkg4ZWcxLgAwy7kaMDX7fN-4sL1LJnXd2Ma1XfK3SN6Cty7Gpv1KmjaZ-fbHL03XLF3y4lY-bC_YSW2W0V0e8px9PEzm46d0-vr4PB5NUytE0aVUcl4pEK4q8krkhmQBWSkJSFRSlAYMWTIgMyUITU15rYTKHVpbYUkyE-fsZn93Hfz3xsVOL_wmtP1LzVEVJHqI9xTuKRt8jMHVeh2alQlbjaB3hvTOkN4Z0gdDfed632mcc_88Cd4PiF-jpmAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196838742</pqid></control><display><type>article</type><title>NVQuery: Efficient Query Processing in Nonvolatile Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Imani, Mohsen ; Gupta, Saransh ; Sharma, Sahil ; Rosing, Tajana Simunic</creator><creatorcontrib>Imani, Mohsen ; Gupta, Saransh ; Sharma, Sahil ; Rosing, Tajana Simunic</creatorcontrib><description><![CDATA[Today's computing systems use a huge amount of energy and time to process basic queries in database. A large part of it is spent in data movement between the memory and processing cores, owing to the limited cache capacity and memory bandwidth of traditional computers. In this paper, we propose a nonvolatile memory-based query accelerator, called NVQuery, which performs several basic query functions in memory including aggregation, prediction, bit-wise operations, join operations, as well as exact and nearest distance search queries. NVQuery is implemented on a content addressable memory and exploits the analog characteristic of nonvolatile memory in order to enable in-memory processing. To implement nearest distance search in memory, we introduce a novel bitline driving scheme to give weights to the indices of the bits during the search operation. To further improve the energy efficiency, our design supports configurable approximation by adaptively putting memory blocks under voltage overscaling. Our experimental evaluation shows that a NVQuery can provide <inline-formula> <tex-math notation="LaTeX">49.3{\boldsymbol \times } </tex-math></inline-formula> performance speedup and <inline-formula> <tex-math notation="LaTeX">32.9{\boldsymbol \times } </tex-math></inline-formula> energy savings as compared to running the same query on traditional processor. Approximation improves the energy-delay product (EDP) of NVQuery by <inline-formula> <tex-math notation="LaTeX">7.3{\boldsymbol \times } </tex-math></inline-formula>, while providing acceptable accuracy. In addition, NVQuery can achieve <inline-formula> <tex-math notation="LaTeX">30.1{\boldsymbol \times } </tex-math></inline-formula> EDP improvement as compared to the state-of-the-art query accelerators.]]></description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2018.2819080</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerators ; Approximation ; Associative memory ; Bandwidth ; Content addressable memory (CAM) ; in-memory computing ; Mathematical analysis ; Memory management ; Microprocessors ; Nonvolatile memory ; Optimization ; Queries ; Query processing ; Random access memory ; Searching ; Table lookup</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2019-04, Vol.38 (4), p.628-639</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-8b22d903ed65d35a87604b78083d73ba0a8c8a0749381af85f9395e1ccd1b8743</citedby><cites>FETCH-LOGICAL-c336t-8b22d903ed65d35a87604b78083d73ba0a8c8a0749381af85f9395e1ccd1b8743</cites><orcidid>0000-0002-5761-0622 ; 0000-0001-5814-3934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8323230$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8323230$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Gupta, Saransh</creatorcontrib><creatorcontrib>Sharma, Sahil</creatorcontrib><creatorcontrib>Rosing, Tajana Simunic</creatorcontrib><title>NVQuery: Efficient Query Processing in Nonvolatile Memory</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description><![CDATA[Today's computing systems use a huge amount of energy and time to process basic queries in database. A large part of it is spent in data movement between the memory and processing cores, owing to the limited cache capacity and memory bandwidth of traditional computers. In this paper, we propose a nonvolatile memory-based query accelerator, called NVQuery, which performs several basic query functions in memory including aggregation, prediction, bit-wise operations, join operations, as well as exact and nearest distance search queries. NVQuery is implemented on a content addressable memory and exploits the analog characteristic of nonvolatile memory in order to enable in-memory processing. To implement nearest distance search in memory, we introduce a novel bitline driving scheme to give weights to the indices of the bits during the search operation. To further improve the energy efficiency, our design supports configurable approximation by adaptively putting memory blocks under voltage overscaling. Our experimental evaluation shows that a NVQuery can provide <inline-formula> <tex-math notation="LaTeX">49.3{\boldsymbol \times } </tex-math></inline-formula> performance speedup and <inline-formula> <tex-math notation="LaTeX">32.9{\boldsymbol \times } </tex-math></inline-formula> energy savings as compared to running the same query on traditional processor. Approximation improves the energy-delay product (EDP) of NVQuery by <inline-formula> <tex-math notation="LaTeX">7.3{\boldsymbol \times } </tex-math></inline-formula>, while providing acceptable accuracy. In addition, NVQuery can achieve <inline-formula> <tex-math notation="LaTeX">30.1{\boldsymbol \times } </tex-math></inline-formula> EDP improvement as compared to the state-of-the-art query accelerators.]]></description><subject>Accelerators</subject><subject>Approximation</subject><subject>Associative memory</subject><subject>Bandwidth</subject><subject>Content addressable memory (CAM)</subject><subject>in-memory computing</subject><subject>Mathematical analysis</subject><subject>Memory management</subject><subject>Microprocessors</subject><subject>Nonvolatile memory</subject><subject>Optimization</subject><subject>Queries</subject><subject>Query processing</subject><subject>Random access memory</subject><subject>Searching</subject><subject>Table lookup</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD9-gHhZ8Lx1JtndTLyVWj-gVoXqNWSzWdnSbmqyFfrv3doic3hheN4ZeBi7Qhgigrqdj0f3Qw5IQ06ogOCIDVAJmWaY4zEbAJeUAkg4ZWcxLgAwy7kaMDX7fN-4sL1LJnXd2Ma1XfK3SN6Cty7Gpv1KmjaZ-fbHL03XLF3y4lY-bC_YSW2W0V0e8px9PEzm46d0-vr4PB5NUytE0aVUcl4pEK4q8krkhmQBWSkJSFRSlAYMWTIgMyUITU15rYTKHVpbYUkyE-fsZn93Hfz3xsVOL_wmtP1LzVEVJHqI9xTuKRt8jMHVeh2alQlbjaB3hvTOkN4Z0gdDfed632mcc_88Cd4PiF-jpmAU</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Imani, Mohsen</creator><creator>Gupta, Saransh</creator><creator>Sharma, Sahil</creator><creator>Rosing, Tajana Simunic</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0001-5814-3934</orcidid></search><sort><creationdate>20190401</creationdate><title>NVQuery: Efficient Query Processing in Nonvolatile Memory</title><author>Imani, Mohsen ; Gupta, Saransh ; Sharma, Sahil ; Rosing, Tajana Simunic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-8b22d903ed65d35a87604b78083d73ba0a8c8a0749381af85f9395e1ccd1b8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accelerators</topic><topic>Approximation</topic><topic>Associative memory</topic><topic>Bandwidth</topic><topic>Content addressable memory (CAM)</topic><topic>in-memory computing</topic><topic>Mathematical analysis</topic><topic>Memory management</topic><topic>Microprocessors</topic><topic>Nonvolatile memory</topic><topic>Optimization</topic><topic>Queries</topic><topic>Query processing</topic><topic>Random access memory</topic><topic>Searching</topic><topic>Table lookup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imani, Mohsen</creatorcontrib><creatorcontrib>Gupta, Saransh</creatorcontrib><creatorcontrib>Sharma, Sahil</creatorcontrib><creatorcontrib>Rosing, Tajana Simunic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Imani, Mohsen</au><au>Gupta, Saransh</au><au>Sharma, Sahil</au><au>Rosing, Tajana Simunic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NVQuery: Efficient Query Processing in Nonvolatile Memory</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>38</volume><issue>4</issue><spage>628</spage><epage>639</epage><pages>628-639</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract><![CDATA[Today's computing systems use a huge amount of energy and time to process basic queries in database. A large part of it is spent in data movement between the memory and processing cores, owing to the limited cache capacity and memory bandwidth of traditional computers. In this paper, we propose a nonvolatile memory-based query accelerator, called NVQuery, which performs several basic query functions in memory including aggregation, prediction, bit-wise operations, join operations, as well as exact and nearest distance search queries. NVQuery is implemented on a content addressable memory and exploits the analog characteristic of nonvolatile memory in order to enable in-memory processing. To implement nearest distance search in memory, we introduce a novel bitline driving scheme to give weights to the indices of the bits during the search operation. To further improve the energy efficiency, our design supports configurable approximation by adaptively putting memory blocks under voltage overscaling. Our experimental evaluation shows that a NVQuery can provide <inline-formula> <tex-math notation="LaTeX">49.3{\boldsymbol \times } </tex-math></inline-formula> performance speedup and <inline-formula> <tex-math notation="LaTeX">32.9{\boldsymbol \times } </tex-math></inline-formula> energy savings as compared to running the same query on traditional processor. Approximation improves the energy-delay product (EDP) of NVQuery by <inline-formula> <tex-math notation="LaTeX">7.3{\boldsymbol \times } </tex-math></inline-formula>, while providing acceptable accuracy. In addition, NVQuery can achieve <inline-formula> <tex-math notation="LaTeX">30.1{\boldsymbol \times } </tex-math></inline-formula> EDP improvement as compared to the state-of-the-art query accelerators.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2018.2819080</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5761-0622</orcidid><orcidid>https://orcid.org/0000-0001-5814-3934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2019-04, Vol.38 (4), p.628-639 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_8323230 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerators Approximation Associative memory Bandwidth Content addressable memory (CAM) in-memory computing Mathematical analysis Memory management Microprocessors Nonvolatile memory Optimization Queries Query processing Random access memory Searching Table lookup |
title | NVQuery: Efficient Query Processing in Nonvolatile Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NVQuery:%20Efficient%20Query%20Processing%20in%20Nonvolatile%20Memory&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Imani,%20Mohsen&rft.date=2019-04-01&rft.volume=38&rft.issue=4&rft.spage=628&rft.epage=639&rft.pages=628-639&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2018.2819080&rft_dat=%3Cproquest_RIE%3E2196838742%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196838742&rft_id=info:pmid/&rft_ieee_id=8323230&rfr_iscdi=true |