Decoding of information from distributed motor maps

Two possible methods for decoding the saccadic command vector from distributed neural activity in the superior colliculus (SC) are vector summation (VS) and center of mass (CM). It has been suggested that the pattern of eye movement errors obtained following the placement of a collicular lesion can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Badler, J.B., Keller, E.L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151 vol.1
container_issue
container_start_page 146
container_title
container_volume 1
creator Badler, J.B.
Keller, E.L.
description Two possible methods for decoding the saccadic command vector from distributed neural activity in the superior colliculus (SC) are vector summation (VS) and center of mass (CM). It has been suggested that the pattern of eye movement errors obtained following the placement of a collicular lesion can distinguish between these two mechanisms. We lesion a recurrent neural network model of the SC and show that the pattern of saccadic errors obtained appears to support the CM hypothesis, even though the model colliculus is decoded by VS. In addition, model saccade trajectories are not curved. The former result demonstrates that an explicit CM computation is not needed to reproduce physiological results, that have previously been taken to support the CM hypothesis. The latter result has implications for the role of the SC in the feedback loop thought to control saccadic trajectory.
doi_str_mv 10.1109/IJCNN.1999.831473
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_831473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>831473</ieee_id><sourcerecordid>831473</sourcerecordid><originalsourceid>FETCH-ieee_primary_8314733</originalsourceid><addsrcrecordid>eNp9zrsOgjAYQOHGSyKoD6BTXwD8SyltZ9SoA5M7QSmmxlLS1sG310RnpzN8y0FoRSAlBOTmeCqrKiVSylRQknM6QhFhTCRUQjZGMXABlLFMFpMPgBQJZ7yYodj7O0ABPJcRolt1ta3ub9h2WPeddaYJ2va4c9bgVvvg9OUZVIuNDdZh0wx-gaZd8_Bq-escrfe7c3lItFKqHpw2jXvV3yf6F9_yCzc3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Decoding of information from distributed motor maps</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Badler, J.B. ; Keller, E.L.</creator><creatorcontrib>Badler, J.B. ; Keller, E.L.</creatorcontrib><description>Two possible methods for decoding the saccadic command vector from distributed neural activity in the superior colliculus (SC) are vector summation (VS) and center of mass (CM). It has been suggested that the pattern of eye movement errors obtained following the placement of a collicular lesion can distinguish between these two mechanisms. We lesion a recurrent neural network model of the SC and show that the pattern of saccadic errors obtained appears to support the CM hypothesis, even though the model colliculus is decoded by VS. In addition, model saccade trajectories are not curved. The former result demonstrates that an explicit CM computation is not needed to reproduce physiological results, that have previously been taken to support the CM hypothesis. The latter result has implications for the role of the SC in the feedback loop thought to control saccadic trajectory.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.831473</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical engineering ; Brain ; Decoding ; Feedback loop ; Fires ; Lesions ; Muscles ; Neurons ; Recurrent neural networks ; Spatiotemporal phenomena</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.146-151 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/831473$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/831473$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badler, J.B.</creatorcontrib><creatorcontrib>Keller, E.L.</creatorcontrib><title>Decoding of information from distributed motor maps</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>Two possible methods for decoding the saccadic command vector from distributed neural activity in the superior colliculus (SC) are vector summation (VS) and center of mass (CM). It has been suggested that the pattern of eye movement errors obtained following the placement of a collicular lesion can distinguish between these two mechanisms. We lesion a recurrent neural network model of the SC and show that the pattern of saccadic errors obtained appears to support the CM hypothesis, even though the model colliculus is decoded by VS. In addition, model saccade trajectories are not curved. The former result demonstrates that an explicit CM computation is not needed to reproduce physiological results, that have previously been taken to support the CM hypothesis. The latter result has implications for the role of the SC in the feedback loop thought to control saccadic trajectory.</description><subject>Biomedical engineering</subject><subject>Brain</subject><subject>Decoding</subject><subject>Feedback loop</subject><subject>Fires</subject><subject>Lesions</subject><subject>Muscles</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Spatiotemporal phenomena</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zrsOgjAYQOHGSyKoD6BTXwD8SyltZ9SoA5M7QSmmxlLS1sG310RnpzN8y0FoRSAlBOTmeCqrKiVSylRQknM6QhFhTCRUQjZGMXABlLFMFpMPgBQJZ7yYodj7O0ABPJcRolt1ta3ub9h2WPeddaYJ2va4c9bgVvvg9OUZVIuNDdZh0wx-gaZd8_Bq-escrfe7c3lItFKqHpw2jXvV3yf6F9_yCzc3</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Badler, J.B.</creator><creator>Keller, E.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Decoding of information from distributed motor maps</title><author>Badler, J.B. ; Keller, E.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8314733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biomedical engineering</topic><topic>Brain</topic><topic>Decoding</topic><topic>Feedback loop</topic><topic>Fires</topic><topic>Lesions</topic><topic>Muscles</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Spatiotemporal phenomena</topic><toplevel>online_resources</toplevel><creatorcontrib>Badler, J.B.</creatorcontrib><creatorcontrib>Keller, E.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badler, J.B.</au><au>Keller, E.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Decoding of information from distributed motor maps</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>146</spage><epage>151 vol.1</epage><pages>146-151 vol.1</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>Two possible methods for decoding the saccadic command vector from distributed neural activity in the superior colliculus (SC) are vector summation (VS) and center of mass (CM). It has been suggested that the pattern of eye movement errors obtained following the placement of a collicular lesion can distinguish between these two mechanisms. We lesion a recurrent neural network model of the SC and show that the pattern of saccadic errors obtained appears to support the CM hypothesis, even though the model colliculus is decoded by VS. In addition, model saccade trajectories are not curved. The former result demonstrates that an explicit CM computation is not needed to reproduce physiological results, that have previously been taken to support the CM hypothesis. The latter result has implications for the role of the SC in the feedback loop thought to control saccadic trajectory.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.831473</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.1, p.146-151 vol.1
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_831473
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical engineering
Brain
Decoding
Feedback loop
Fires
Lesions
Muscles
Neurons
Recurrent neural networks
Spatiotemporal phenomena
title Decoding of information from distributed motor maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Decoding%20of%20information%20from%20distributed%20motor%20maps&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Badler,%20J.B.&rft.date=1999&rft.volume=1&rft.spage=146&rft.epage=151%20vol.1&rft.pages=146-151%20vol.1&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.831473&rft_dat=%3Cieee_6IE%3E831473%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=831473&rfr_iscdi=true