Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs

This paper introduces the graph-structured recursive least squares (GS-RLS) algorithm, which is a very efficient means to track a linear time-varying system when the inputs to the system have structure that can be modeled using a decomposable Gaussian graphical model. For graphs with small clique si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-05, Vol.66 (10), p.2645-2658
Hauptverfasser: Yellepeddi, Atulya, Preisig, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2658
container_issue 10
container_start_page 2645
container_title IEEE transactions on signal processing
container_volume 66
creator Yellepeddi, Atulya
Preisig, James C.
description This paper introduces the graph-structured recursive least squares (GS-RLS) algorithm, which is a very efficient means to track a linear time-varying system when the inputs to the system have structure that can be modeled using a decomposable Gaussian graphical model. For graphs with small clique sizes, it is shown that GS-RLS can achieve tracking performance very close to that of the conventional RLS algorithm for a fraction of the computational cost. In particular, after proving that the outputs of wide-sense stationary time-varying communication channels have graphical model structure if the inputs are cyclostationary, significant computational gains are realized for adaptive equalization of the time-varying underwater acoustic communication channel using the GS-RLS algorithm. This is verified using field data from the SPACE08 underwater acoustic communication experiment.
doi_str_mv 10.1109/TSP.2018.2811745
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8309373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8309373</ieee_id><sourcerecordid>10_1109_TSP_2018_2811745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-59c22901218536942d5f0c2c38283c5b21e7a86f078d2d22c764055e2b9cabdd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjf5A535aNrkcsw5BwOFTfSupEnqol0bk3Qwf4E_2-4Dr87hnPM-HB4AbjEaYYzE_Wr5MiII8xHhGOcpOwMDLFKcoDTPzvseMZownr9fgqsQPhHCaSqyAfidVpVV1jQRLnchmg1ceam-bPMB32xcwwej2o1rgyxrA2deunWyjL5TsfNGw3njuhigbDQcO1dbJaNtGxhbONbSRbs1cPrdydr-HBcH5GSn6jbEw0T63QlyDS4qWQdzc6pD8Po4XU2eksXzbD4ZLxJFMhoTJhQhAmGCOaOZSIlmFVJEUU44Vawk2OSSZxXKuSaaEJVnKWLMkFIoWWpNhwAducq3IXhTFc7bTf9HgVGxN1n0Jou9yeJkso_cHSPWGPN_zikSNKf0D4jmcmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs</title><source>IEEE Electronic Library (IEL)</source><creator>Yellepeddi, Atulya ; Preisig, James C.</creator><creatorcontrib>Yellepeddi, Atulya ; Preisig, James C.</creatorcontrib><description>This paper introduces the graph-structured recursive least squares (GS-RLS) algorithm, which is a very efficient means to track a linear time-varying system when the inputs to the system have structure that can be modeled using a decomposable Gaussian graphical model. For graphs with small clique sizes, it is shown that GS-RLS can achieve tracking performance very close to that of the conventional RLS algorithm for a fraction of the computational cost. In particular, after proving that the outputs of wide-sense stationary time-varying communication channels have graphical model structure if the inputs are cyclostationary, significant computational gains are realized for adaptive equalization of the time-varying underwater acoustic communication channel using the GS-RLS algorithm. This is verified using field data from the SPACE08 underwater acoustic communication experiment.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2018.2811745</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive algorithms ; Adaptive equalizers ; Graphical models ; Hidden Markov models ; Particle separators ; Random variables ; Signal processing algorithms ; Time-varying systems ; underwater communication</subject><ispartof>IEEE transactions on signal processing, 2018-05, Vol.66 (10), p.2645-2658</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-59c22901218536942d5f0c2c38283c5b21e7a86f078d2d22c764055e2b9cabdd3</citedby><cites>FETCH-LOGICAL-c263t-59c22901218536942d5f0c2c38283c5b21e7a86f078d2d22c764055e2b9cabdd3</cites><orcidid>0000-0003-2703-4748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8309373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8309373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yellepeddi, Atulya</creatorcontrib><creatorcontrib>Preisig, James C.</creatorcontrib><title>Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper introduces the graph-structured recursive least squares (GS-RLS) algorithm, which is a very efficient means to track a linear time-varying system when the inputs to the system have structure that can be modeled using a decomposable Gaussian graphical model. For graphs with small clique sizes, it is shown that GS-RLS can achieve tracking performance very close to that of the conventional RLS algorithm for a fraction of the computational cost. In particular, after proving that the outputs of wide-sense stationary time-varying communication channels have graphical model structure if the inputs are cyclostationary, significant computational gains are realized for adaptive equalization of the time-varying underwater acoustic communication channel using the GS-RLS algorithm. This is verified using field data from the SPACE08 underwater acoustic communication experiment.</description><subject>adaptive algorithms</subject><subject>Adaptive equalizers</subject><subject>Graphical models</subject><subject>Hidden Markov models</subject><subject>Particle separators</subject><subject>Random variables</subject><subject>Signal processing algorithms</subject><subject>Time-varying systems</subject><subject>underwater communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjf5A535aNrkcsw5BwOFTfSupEnqol0bk3Qwf4E_2-4Dr87hnPM-HB4AbjEaYYzE_Wr5MiII8xHhGOcpOwMDLFKcoDTPzvseMZownr9fgqsQPhHCaSqyAfidVpVV1jQRLnchmg1ceam-bPMB32xcwwej2o1rgyxrA2deunWyjL5TsfNGw3njuhigbDQcO1dbJaNtGxhbONbSRbs1cPrdydr-HBcH5GSn6jbEw0T63QlyDS4qWQdzc6pD8Po4XU2eksXzbD4ZLxJFMhoTJhQhAmGCOaOZSIlmFVJEUU44Vawk2OSSZxXKuSaaEJVnKWLMkFIoWWpNhwAducq3IXhTFc7bTf9HgVGxN1n0Jou9yeJkso_cHSPWGPN_zikSNKf0D4jmcmE</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Yellepeddi, Atulya</creator><creator>Preisig, James C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2703-4748</orcidid></search><sort><creationdate>20180515</creationdate><title>Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs</title><author>Yellepeddi, Atulya ; Preisig, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-59c22901218536942d5f0c2c38283c5b21e7a86f078d2d22c764055e2b9cabdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>adaptive algorithms</topic><topic>Adaptive equalizers</topic><topic>Graphical models</topic><topic>Hidden Markov models</topic><topic>Particle separators</topic><topic>Random variables</topic><topic>Signal processing algorithms</topic><topic>Time-varying systems</topic><topic>underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yellepeddi, Atulya</creatorcontrib><creatorcontrib>Preisig, James C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yellepeddi, Atulya</au><au>Preisig, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-05-15</date><risdate>2018</risdate><volume>66</volume><issue>10</issue><spage>2645</spage><epage>2658</epage><pages>2645-2658</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper introduces the graph-structured recursive least squares (GS-RLS) algorithm, which is a very efficient means to track a linear time-varying system when the inputs to the system have structure that can be modeled using a decomposable Gaussian graphical model. For graphs with small clique sizes, it is shown that GS-RLS can achieve tracking performance very close to that of the conventional RLS algorithm for a fraction of the computational cost. In particular, after proving that the outputs of wide-sense stationary time-varying communication channels have graphical model structure if the inputs are cyclostationary, significant computational gains are realized for adaptive equalization of the time-varying underwater acoustic communication channel using the GS-RLS algorithm. This is verified using field data from the SPACE08 underwater acoustic communication experiment.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2018.2811745</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2703-4748</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-05, Vol.66 (10), p.2645-2658
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8309373
source IEEE Electronic Library (IEL)
subjects adaptive algorithms
Adaptive equalizers
Graphical models
Hidden Markov models
Particle separators
Random variables
Signal processing algorithms
Time-varying systems
underwater communication
title Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20System%20Tracking%20With%20Decomposable%20Graph-Structured%20Inputs%20and%20Application%20to%20Adaptive%20Equalization%20With%20Cyclostationary%20Inputs&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yellepeddi,%20Atulya&rft.date=2018-05-15&rft.volume=66&rft.issue=10&rft.spage=2645&rft.epage=2658&rft.pages=2645-2658&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2018.2811745&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2018_2811745%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8309373&rfr_iscdi=true