Modeling of thermodynamic properties of substances by neural networks

A new method based on neural networks was developed for the modeling of thermodynamic properties of substances. When applied to the mixture of air and H/sub 2/O, the preset accuracy of 1% was obtained at every test point and the neural networks proved to be 5000 times faster than a conventional iter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lilja, R., Hamalainen, J.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3932 vol.6
container_issue
container_start_page 3927
container_title
container_volume 6
creator Lilja, R.
Hamalainen, J.J.
description A new method based on neural networks was developed for the modeling of thermodynamic properties of substances. When applied to the mixture of air and H/sub 2/O, the preset accuracy of 1% was obtained at every test point and the neural networks proved to be 5000 times faster than a conventional iterative algorithm. Large tables characteristic of previous interpolation methods are not needed. The neural network models enable new process simulation applications.
doi_str_mv 10.1109/IJCNN.1999.830784
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_830784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>830784</ieee_id><sourcerecordid>830784</sourcerecordid><originalsourceid>FETCH-ieee_primary_8307843</originalsourceid><addsrcrecordid>eNp9jssOgjAUBRsfic8P0FV_ALwVCnRtNGqiK_emwlWrQEkLMfy9Nbp2NZkzm0PIjIHPGIjFbr86Hn0mhPCTAOIk7JAh4zzxAgHLLhm5CQLOlyLquQAi8WIeRwMysvYBEEEciiFZH3SGuSpvVF9pfUdT6KwtZaFSWhldoakV2k-zzcXWskydXVpaYmNk7lC_tHnaCelfZW5x-uOYzDfr02rrKUQ8V0YV0rTn78vgb3wDvOk-eA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling of thermodynamic properties of substances by neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lilja, R. ; Hamalainen, J.J.</creator><creatorcontrib>Lilja, R. ; Hamalainen, J.J.</creatorcontrib><description>A new method based on neural networks was developed for the modeling of thermodynamic properties of substances. When applied to the mixture of air and H/sub 2/O, the preset accuracy of 1% was obtained at every test point and the neural networks proved to be 5000 times faster than a conventional iterative algorithm. Large tables characteristic of previous interpolation methods are not needed. The neural network models enable new process simulation applications.</description><identifier>ISSN: 1098-7576</identifier><identifier>ISBN: 0780355296</identifier><identifier>ISBN: 9780780355293</identifier><identifier>EISSN: 1558-3902</identifier><identifier>DOI: 10.1109/IJCNN.1999.830784</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Automation ; Function approximation ; Interpolation ; Iterative algorithms ; Neural networks ; Numerical simulation ; Temperature ; Testing ; Thermodynamics</subject><ispartof>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.6, p.3927-3932 vol.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/830784$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/830784$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lilja, R.</creatorcontrib><creatorcontrib>Hamalainen, J.J.</creatorcontrib><title>Modeling of thermodynamic properties of substances by neural networks</title><title>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</title><addtitle>IJCNN</addtitle><description>A new method based on neural networks was developed for the modeling of thermodynamic properties of substances. When applied to the mixture of air and H/sub 2/O, the preset accuracy of 1% was obtained at every test point and the neural networks proved to be 5000 times faster than a conventional iterative algorithm. Large tables characteristic of previous interpolation methods are not needed. The neural network models enable new process simulation applications.</description><subject>Analytical models</subject><subject>Automation</subject><subject>Function approximation</subject><subject>Interpolation</subject><subject>Iterative algorithms</subject><subject>Neural networks</subject><subject>Numerical simulation</subject><subject>Temperature</subject><subject>Testing</subject><subject>Thermodynamics</subject><issn>1098-7576</issn><issn>1558-3902</issn><isbn>0780355296</isbn><isbn>9780780355293</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jssOgjAUBRsfic8P0FV_ALwVCnRtNGqiK_emwlWrQEkLMfy9Nbp2NZkzm0PIjIHPGIjFbr86Hn0mhPCTAOIk7JAh4zzxAgHLLhm5CQLOlyLquQAi8WIeRwMysvYBEEEciiFZH3SGuSpvVF9pfUdT6KwtZaFSWhldoakV2k-zzcXWskydXVpaYmNk7lC_tHnaCelfZW5x-uOYzDfr02rrKUQ8V0YV0rTn78vgb3wDvOk-eA</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Lilja, R.</creator><creator>Hamalainen, J.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Modeling of thermodynamic properties of substances by neural networks</title><author>Lilja, R. ; Hamalainen, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8307843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analytical models</topic><topic>Automation</topic><topic>Function approximation</topic><topic>Interpolation</topic><topic>Iterative algorithms</topic><topic>Neural networks</topic><topic>Numerical simulation</topic><topic>Temperature</topic><topic>Testing</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lilja, R.</creatorcontrib><creatorcontrib>Hamalainen, J.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lilja, R.</au><au>Hamalainen, J.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling of thermodynamic properties of substances by neural networks</atitle><btitle>IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)</btitle><stitle>IJCNN</stitle><date>1999</date><risdate>1999</risdate><volume>6</volume><spage>3927</spage><epage>3932 vol.6</epage><pages>3927-3932 vol.6</pages><issn>1098-7576</issn><eissn>1558-3902</eissn><isbn>0780355296</isbn><isbn>9780780355293</isbn><abstract>A new method based on neural networks was developed for the modeling of thermodynamic properties of substances. When applied to the mixture of air and H/sub 2/O, the preset accuracy of 1% was obtained at every test point and the neural networks proved to be 5000 times faster than a conventional iterative algorithm. Large tables characteristic of previous interpolation methods are not needed. The neural network models enable new process simulation applications.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1999.830784</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7576
ispartof IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339), 1999, Vol.6, p.3927-3932 vol.6
issn 1098-7576
1558-3902
language eng
recordid cdi_ieee_primary_830784
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Analytical models
Automation
Function approximation
Interpolation
Iterative algorithms
Neural networks
Numerical simulation
Temperature
Testing
Thermodynamics
title Modeling of thermodynamic properties of substances by neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20of%20thermodynamic%20properties%20of%20substances%20by%20neural%20networks&rft.btitle=IJCNN'99.%20International%20Joint%20Conference%20on%20Neural%20Networks.%20Proceedings%20(Cat.%20No.99CH36339)&rft.au=Lilja,%20R.&rft.date=1999&rft.volume=6&rft.spage=3927&rft.epage=3932%20vol.6&rft.pages=3927-3932%20vol.6&rft.issn=1098-7576&rft.eissn=1558-3902&rft.isbn=0780355296&rft.isbn_list=9780780355293&rft_id=info:doi/10.1109/IJCNN.1999.830784&rft_dat=%3Cieee_6IE%3E830784%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=830784&rfr_iscdi=true