Fingerprint Spoof Buster: Use of Minutiae-Centered Patches

The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2018-09, Vol.13 (9), p.2190-2202
Hauptverfasser: Chugh, Tarang, Kai Cao, Jain, Anil K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2202
container_issue 9
container_start_page 2190
container_title IEEE transactions on information forensics and security
container_volume 13
creator Chugh, Tarang
Kai Cao
Jain, Anil K.
description The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.
doi_str_mv 10.1109/TIFS.2018.2812193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8306930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8306930</ieee_id><sourcerecordid>2033965440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJHk_s2N1BRaFSEUht11YeE0gFSbGTBX-Po1ZdzZ3Rnddh7BZ4AsDNw2a5WCeCg06EBgEGz9gEpFSx4gLOTxrwkl15v-M8TUHpCZstmvaT3N41bR-t911XR0-D78nNoq2nKKRvTTv0TU7xnNpQpyr6yPvyi_w1u6jzb083xzhl28XzZv4ar95flvPHVVwKg30MZSEzwBTLCgXxCnS4KFNYYIVgjEaZoanJBC1SVeiKlBFS1KYALUuhccruD3P3rvsdyPd21w2uDSut4IhGyTTlwQUHV-k67x3VNvz0k7s_C9yOiOyIyI6I7BFR6Lk79DREdPJr5Mogx39uIF9j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033965440</pqid></control><display><type>article</type><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><source>IEEE Electronic Library (IEL)</source><creator>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</creator><creatorcontrib>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</creatorcontrib><description>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2812193</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biometric recognition systems ; convolutional neural networks ; Cybersecurity ; Datasets ; Fabrication ; Feature extraction ; Fingerprint recognition ; Fingerprint spoof detection ; Fingerprint verification ; Fingerprinting ; Graphical user interface ; Image sensors ; liveness detection ; minutiae-based local patches ; Neural networks ; Patches (structures) ; presentation attack detection ; Security ; Sensors ; Spoofing ; Two dimensional displays</subject><ispartof>IEEE transactions on information forensics and security, 2018-09, Vol.13 (9), p.2190-2202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</citedby><cites>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</cites><orcidid>0000-0002-6369-6995 ; 0000-0003-0759-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8306930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8306930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chugh, Tarang</creatorcontrib><creatorcontrib>Kai Cao</creatorcontrib><creatorcontrib>Jain, Anil K.</creatorcontrib><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</description><subject>Artificial neural networks</subject><subject>Biometric recognition systems</subject><subject>convolutional neural networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Fabrication</subject><subject>Feature extraction</subject><subject>Fingerprint recognition</subject><subject>Fingerprint spoof detection</subject><subject>Fingerprint verification</subject><subject>Fingerprinting</subject><subject>Graphical user interface</subject><subject>Image sensors</subject><subject>liveness detection</subject><subject>minutiae-based local patches</subject><subject>Neural networks</subject><subject>Patches (structures)</subject><subject>presentation attack detection</subject><subject>Security</subject><subject>Sensors</subject><subject>Spoofing</subject><subject>Two dimensional displays</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJHk_s2N1BRaFSEUht11YeE0gFSbGTBX-Po1ZdzZ3Rnddh7BZ4AsDNw2a5WCeCg06EBgEGz9gEpFSx4gLOTxrwkl15v-M8TUHpCZstmvaT3N41bR-t911XR0-D78nNoq2nKKRvTTv0TU7xnNpQpyr6yPvyi_w1u6jzb083xzhl28XzZv4ar95flvPHVVwKg30MZSEzwBTLCgXxCnS4KFNYYIVgjEaZoanJBC1SVeiKlBFS1KYALUuhccruD3P3rvsdyPd21w2uDSut4IhGyTTlwQUHV-k67x3VNvz0k7s_C9yOiOyIyI6I7BFR6Lk79DREdPJr5Mogx39uIF9j</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Chugh, Tarang</creator><creator>Kai Cao</creator><creator>Jain, Anil K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6369-6995</orcidid><orcidid>https://orcid.org/0000-0003-0759-6620</orcidid></search><sort><creationdate>20180901</creationdate><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><author>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Biometric recognition systems</topic><topic>convolutional neural networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Fabrication</topic><topic>Feature extraction</topic><topic>Fingerprint recognition</topic><topic>Fingerprint spoof detection</topic><topic>Fingerprint verification</topic><topic>Fingerprinting</topic><topic>Graphical user interface</topic><topic>Image sensors</topic><topic>liveness detection</topic><topic>minutiae-based local patches</topic><topic>Neural networks</topic><topic>Patches (structures)</topic><topic>presentation attack detection</topic><topic>Security</topic><topic>Sensors</topic><topic>Spoofing</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugh, Tarang</creatorcontrib><creatorcontrib>Kai Cao</creatorcontrib><creatorcontrib>Jain, Anil K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chugh, Tarang</au><au>Kai Cao</au><au>Jain, Anil K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>2190</spage><epage>2202</epage><pages>2190-2202</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2812193</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6369-6995</orcidid><orcidid>https://orcid.org/0000-0003-0759-6620</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2018-09, Vol.13 (9), p.2190-2202
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_8306930
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biometric recognition systems
convolutional neural networks
Cybersecurity
Datasets
Fabrication
Feature extraction
Fingerprint recognition
Fingerprint spoof detection
Fingerprint verification
Fingerprinting
Graphical user interface
Image sensors
liveness detection
minutiae-based local patches
Neural networks
Patches (structures)
presentation attack detection
Security
Sensors
Spoofing
Two dimensional displays
title Fingerprint Spoof Buster: Use of Minutiae-Centered Patches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprint%20Spoof%20Buster:%20Use%20of%20Minutiae-Centered%20Patches&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Chugh,%20Tarang&rft.date=2018-09-01&rft.volume=13&rft.issue=9&rft.spage=2190&rft.epage=2202&rft.pages=2190-2202&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2812193&rft_dat=%3Cproquest_RIE%3E2033965440%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033965440&rft_id=info:pmid/&rft_ieee_id=8306930&rfr_iscdi=true