Fingerprint Spoof Buster: Use of Minutiae-Centered Patches
The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms fo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2018-09, Vol.13 (9), p.2190-2202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2202 |
---|---|
container_issue | 9 |
container_start_page | 2190 |
container_title | IEEE transactions on information forensics and security |
container_volume | 13 |
creator | Chugh, Tarang Kai Cao Jain, Anil K. |
description | The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches. |
doi_str_mv | 10.1109/TIFS.2018.2812193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8306930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8306930</ieee_id><sourcerecordid>2033965440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJHk_s2N1BRaFSEUht11YeE0gFSbGTBX-Po1ZdzZ3Rnddh7BZ4AsDNw2a5WCeCg06EBgEGz9gEpFSx4gLOTxrwkl15v-M8TUHpCZstmvaT3N41bR-t911XR0-D78nNoq2nKKRvTTv0TU7xnNpQpyr6yPvyi_w1u6jzb083xzhl28XzZv4ar95flvPHVVwKg30MZSEzwBTLCgXxCnS4KFNYYIVgjEaZoanJBC1SVeiKlBFS1KYALUuhccruD3P3rvsdyPd21w2uDSut4IhGyTTlwQUHV-k67x3VNvz0k7s_C9yOiOyIyI6I7BFR6Lk79DREdPJr5Mogx39uIF9j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033965440</pqid></control><display><type>article</type><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><source>IEEE Electronic Library (IEL)</source><creator>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</creator><creatorcontrib>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</creatorcontrib><description>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2018.2812193</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biometric recognition systems ; convolutional neural networks ; Cybersecurity ; Datasets ; Fabrication ; Feature extraction ; Fingerprint recognition ; Fingerprint spoof detection ; Fingerprint verification ; Fingerprinting ; Graphical user interface ; Image sensors ; liveness detection ; minutiae-based local patches ; Neural networks ; Patches (structures) ; presentation attack detection ; Security ; Sensors ; Spoofing ; Two dimensional displays</subject><ispartof>IEEE transactions on information forensics and security, 2018-09, Vol.13 (9), p.2190-2202</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</citedby><cites>FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</cites><orcidid>0000-0002-6369-6995 ; 0000-0003-0759-6620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8306930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8306930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chugh, Tarang</creatorcontrib><creatorcontrib>Kai Cao</creatorcontrib><creatorcontrib>Jain, Anil K.</creatorcontrib><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</description><subject>Artificial neural networks</subject><subject>Biometric recognition systems</subject><subject>convolutional neural networks</subject><subject>Cybersecurity</subject><subject>Datasets</subject><subject>Fabrication</subject><subject>Feature extraction</subject><subject>Fingerprint recognition</subject><subject>Fingerprint spoof detection</subject><subject>Fingerprint verification</subject><subject>Fingerprinting</subject><subject>Graphical user interface</subject><subject>Image sensors</subject><subject>liveness detection</subject><subject>minutiae-based local patches</subject><subject>Neural networks</subject><subject>Patches (structures)</subject><subject>presentation attack detection</subject><subject>Security</subject><subject>Sensors</subject><subject>Spoofing</subject><subject>Two dimensional displays</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYhNJNYJHk_s2N1BRaFSEUht11YeE0gFSbGTBX-Po1ZdzZ3Rnddh7BZ4AsDNw2a5WCeCg06EBgEGz9gEpFSx4gLOTxrwkl15v-M8TUHpCZstmvaT3N41bR-t911XR0-D78nNoq2nKKRvTTv0TU7xnNpQpyr6yPvyi_w1u6jzb083xzhl28XzZv4ar95flvPHVVwKg30MZSEzwBTLCgXxCnS4KFNYYIVgjEaZoanJBC1SVeiKlBFS1KYALUuhccruD3P3rvsdyPd21w2uDSut4IhGyTTlwQUHV-k67x3VNvz0k7s_C9yOiOyIyI6I7BFR6Lk79DREdPJr5Mogx39uIF9j</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Chugh, Tarang</creator><creator>Kai Cao</creator><creator>Jain, Anil K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6369-6995</orcidid><orcidid>https://orcid.org/0000-0003-0759-6620</orcidid></search><sort><creationdate>20180901</creationdate><title>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</title><author>Chugh, Tarang ; Kai Cao ; Jain, Anil K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1cb571343cd32e0d18021763b3d3199835739fe9199246b8de69252f9b185c283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Biometric recognition systems</topic><topic>convolutional neural networks</topic><topic>Cybersecurity</topic><topic>Datasets</topic><topic>Fabrication</topic><topic>Feature extraction</topic><topic>Fingerprint recognition</topic><topic>Fingerprint spoof detection</topic><topic>Fingerprint verification</topic><topic>Fingerprinting</topic><topic>Graphical user interface</topic><topic>Image sensors</topic><topic>liveness detection</topic><topic>minutiae-based local patches</topic><topic>Neural networks</topic><topic>Patches (structures)</topic><topic>presentation attack detection</topic><topic>Security</topic><topic>Sensors</topic><topic>Spoofing</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugh, Tarang</creatorcontrib><creatorcontrib>Kai Cao</creatorcontrib><creatorcontrib>Jain, Anil K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chugh, Tarang</au><au>Kai Cao</au><au>Jain, Anil K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprint Spoof Buster: Use of Minutiae-Centered Patches</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>2190</spage><epage>2202</epage><pages>2190-2202</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The primary purpose of a fingerprint recognition system is to ensure a reliable and accurate user authentication, but the security of the recognition system itself can be jeopardized by spoof attacks. This paper addresses the problem of developing accurate, generalizable, and efficient algorithms for detecting fingerprint spoof attacks. Specifically, we propose a deep convolutional neural network-based approach utilizing local patches centered and aligned using fingerprint minutiae. Experimental results on three public-domain LivDet datasets (2011, 2013, and 2015) show that the proposed approach provides the state-of-the-art accuracies in fingerprint spoof detection for intra-sensor, cross-material, cross-sensor, as well as cross-dataset testing scenarios. For example, in LivDet 2015, the proposed approach achieves 99.03% average accuracy over all sensors compared with 95.51% achieved by the LivDet 2015 competition winners. In addition, two new fingerprint presentation attack datasets containing more than 20,000 images, using two different fingerprint readers, and over 12 different spoof fabrication materials are collected. We also present a graphical user interface, called Fingerprint Spoof Buster, that allows the operator to visually examine the local regions of the fingerprint highlighted as live or spoof, instead of relying on only a single score as output by the traditional approaches.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2018.2812193</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6369-6995</orcidid><orcidid>https://orcid.org/0000-0003-0759-6620</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2018-09, Vol.13 (9), p.2190-2202 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_8306930 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biometric recognition systems convolutional neural networks Cybersecurity Datasets Fabrication Feature extraction Fingerprint recognition Fingerprint spoof detection Fingerprint verification Fingerprinting Graphical user interface Image sensors liveness detection minutiae-based local patches Neural networks Patches (structures) presentation attack detection Security Sensors Spoofing Two dimensional displays |
title | Fingerprint Spoof Buster: Use of Minutiae-Centered Patches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprint%20Spoof%20Buster:%20Use%20of%20Minutiae-Centered%20Patches&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Chugh,%20Tarang&rft.date=2018-09-01&rft.volume=13&rft.issue=9&rft.spage=2190&rft.epage=2202&rft.pages=2190-2202&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2018.2812193&rft_dat=%3Cproquest_RIE%3E2033965440%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033965440&rft_id=info:pmid/&rft_ieee_id=8306930&rfr_iscdi=true |