Network-Clustered Multi-Modal Bug Localization
Developers often spend much effort and resources to debug a program. To help the developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been devised. IR-based techniques process textual information in bug reports, while spectrum-based techniqu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on software engineering 2019-10, Vol.45 (10), p.1002-1023 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 10 |
container_start_page | 1002 |
container_title | IEEE transactions on software engineering |
container_volume | 45 |
creator | Hoang, Thong Oentaryo, Richard J. Le, Tien-Duy B. Lo, David |
description | Developers often spend much effort and resources to debug a program. To help the developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been devised. IR-based techniques process textual information in bug reports, while spectrum-based techniques process program spectra (i.e., a record of which program elements are executed for each test case). While both techniques ultimately generate a ranked list of program elements that likely contain a bug, they only consider one source of information-either bug reports or program spectra-which is not optimal. In light of this deficiency, this paper presents a new approach dubbed Network-clustered Multi-modal Bug Localization (NetML), which utilizes multi-modal information from both bug reports and program spectra to localize bugs. NetML facilitates an effective bug localization by carrying out a joint optimization of bug localization error and clustering of both bug reports and program elements (i.e., methods). The clustering is achieved through the incorporation of network Lasso regularization, which incentivizes the model parameters of similar bug reports and similar program elements to be close together. To estimate the model parameters of both bug reports and methods, NetML employs an adaptive learning procedure based on Newton method that updates the parameters on a per-feature basis. Extensive experiments on 355 real bugs from seven software systems have been conducted to benchmark NetML against various state-of-the-art localization methods. The results show that NetML surpasses the best-performing baseline by 31.82, 22.35, 19.72, and 19.24 percent, in terms of the number of bugs successfully localized when a developer inspects the top 1, 5, and 10 methods and Mean Average Precision (MAP), respectively. |
doi_str_mv | 10.1109/TSE.2018.2810892 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8306117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8306117</ieee_id><sourcerecordid>2307213953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8f0af3127d76e47613ff821a0be04c305de14656dd35f0e03aaac0260e4c3e893</originalsourceid><addsrcrecordid>eNo9kM9LAzEQhYMoWKt3wUvBc9aZpNkkRy3-glYP1nOIuxPZujY12UX0r3dLi6c5vO-9gY-xc4QCEezV8uW2EICmEAbBWHHARmil5VIJOGQjAGu4UsYes5OcVwCgtFYjVjxR9x3TB5-1fe4oUT1Z9G3X8EWsfTu56d8n81j5tvn1XRPXp-wo-DbT2f6O2evd7XL2wOfP94-z6zmvhMWOmwA-SBS61iVNdYkyBCPQwxvBtJKgasJpqcq6lioAgfTeVyBKoCElY-WYXe52Nyl-9ZQ7t4p9Wg8vnZCgBUqr5EDBjqpSzDlRcJvUfPr04xDc1oobrLitFbe3MlQudpWGiP5xI6FE1PIPiNRcHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307213953</pqid></control><display><type>article</type><title>Network-Clustered Multi-Modal Bug Localization</title><source>IEEE Electronic Library (IEL)</source><creator>Hoang, Thong ; Oentaryo, Richard J. ; Le, Tien-Duy B. ; Lo, David</creator><creatorcontrib>Hoang, Thong ; Oentaryo, Richard J. ; Le, Tien-Duy B. ; Lo, David</creatorcontrib><description>Developers often spend much effort and resources to debug a program. To help the developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been devised. IR-based techniques process textual information in bug reports, while spectrum-based techniques process program spectra (i.e., a record of which program elements are executed for each test case). While both techniques ultimately generate a ranked list of program elements that likely contain a bug, they only consider one source of information-either bug reports or program spectra-which is not optimal. In light of this deficiency, this paper presents a new approach dubbed Network-clustered Multi-modal Bug Localization (NetML), which utilizes multi-modal information from both bug reports and program spectra to localize bugs. NetML facilitates an effective bug localization by carrying out a joint optimization of bug localization error and clustering of both bug reports and program elements (i.e., methods). The clustering is achieved through the incorporation of network Lasso regularization, which incentivizes the model parameters of similar bug reports and similar program elements to be close together. To estimate the model parameters of both bug reports and methods, NetML employs an adaptive learning procedure based on Newton method that updates the parameters on a per-feature basis. Extensive experiments on 355 real bugs from seven software systems have been conducted to benchmark NetML against various state-of-the-art localization methods. The results show that NetML surpasses the best-performing baseline by 31.82, 22.35, 19.72, and 19.24 percent, in terms of the number of bugs successfully localized when a developer inspects the top 1, 5, and 10 methods and Mean Average Precision (MAP), respectively.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2018.2810892</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Bug localization ; Clustering ; Computational modeling ; Computer bugs ; Debugging ; Information retrieval ; Localization ; Mathematical models ; Newton methods ; Optimization ; Parameter estimation ; Position (location) ; program spectra ; Regularization ; Spectra ; Task analysis</subject><ispartof>IEEE transactions on software engineering, 2019-10, Vol.45 (10), p.1002-1023</ispartof><rights>Copyright IEEE Computer Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8f0af3127d76e47613ff821a0be04c305de14656dd35f0e03aaac0260e4c3e893</citedby><cites>FETCH-LOGICAL-c291t-8f0af3127d76e47613ff821a0be04c305de14656dd35f0e03aaac0260e4c3e893</cites><orcidid>0000-0001-5096-4834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8306117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8306117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoang, Thong</creatorcontrib><creatorcontrib>Oentaryo, Richard J.</creatorcontrib><creatorcontrib>Le, Tien-Duy B.</creatorcontrib><creatorcontrib>Lo, David</creatorcontrib><title>Network-Clustered Multi-Modal Bug Localization</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>Developers often spend much effort and resources to debug a program. To help the developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been devised. IR-based techniques process textual information in bug reports, while spectrum-based techniques process program spectra (i.e., a record of which program elements are executed for each test case). While both techniques ultimately generate a ranked list of program elements that likely contain a bug, they only consider one source of information-either bug reports or program spectra-which is not optimal. In light of this deficiency, this paper presents a new approach dubbed Network-clustered Multi-modal Bug Localization (NetML), which utilizes multi-modal information from both bug reports and program spectra to localize bugs. NetML facilitates an effective bug localization by carrying out a joint optimization of bug localization error and clustering of both bug reports and program elements (i.e., methods). The clustering is achieved through the incorporation of network Lasso regularization, which incentivizes the model parameters of similar bug reports and similar program elements to be close together. To estimate the model parameters of both bug reports and methods, NetML employs an adaptive learning procedure based on Newton method that updates the parameters on a per-feature basis. Extensive experiments on 355 real bugs from seven software systems have been conducted to benchmark NetML against various state-of-the-art localization methods. The results show that NetML surpasses the best-performing baseline by 31.82, 22.35, 19.72, and 19.24 percent, in terms of the number of bugs successfully localized when a developer inspects the top 1, 5, and 10 methods and Mean Average Precision (MAP), respectively.</description><subject>Adaptation models</subject><subject>Bug localization</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Computer bugs</subject><subject>Debugging</subject><subject>Information retrieval</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Newton methods</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Position (location)</subject><subject>program spectra</subject><subject>Regularization</subject><subject>Spectra</subject><subject>Task analysis</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LAzEQhYMoWKt3wUvBc9aZpNkkRy3-glYP1nOIuxPZujY12UX0r3dLi6c5vO-9gY-xc4QCEezV8uW2EICmEAbBWHHARmil5VIJOGQjAGu4UsYes5OcVwCgtFYjVjxR9x3TB5-1fe4oUT1Z9G3X8EWsfTu56d8n81j5tvn1XRPXp-wo-DbT2f6O2evd7XL2wOfP94-z6zmvhMWOmwA-SBS61iVNdYkyBCPQwxvBtJKgasJpqcq6lioAgfTeVyBKoCElY-WYXe52Nyl-9ZQ7t4p9Wg8vnZCgBUqr5EDBjqpSzDlRcJvUfPr04xDc1oobrLitFbe3MlQudpWGiP5xI6FE1PIPiNRcHw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Hoang, Thong</creator><creator>Oentaryo, Richard J.</creator><creator>Le, Tien-Duy B.</creator><creator>Lo, David</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-5096-4834</orcidid></search><sort><creationdate>20191001</creationdate><title>Network-Clustered Multi-Modal Bug Localization</title><author>Hoang, Thong ; Oentaryo, Richard J. ; Le, Tien-Duy B. ; Lo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8f0af3127d76e47613ff821a0be04c305de14656dd35f0e03aaac0260e4c3e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation models</topic><topic>Bug localization</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Computer bugs</topic><topic>Debugging</topic><topic>Information retrieval</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Newton methods</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Position (location)</topic><topic>program spectra</topic><topic>Regularization</topic><topic>Spectra</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Thong</creatorcontrib><creatorcontrib>Oentaryo, Richard J.</creatorcontrib><creatorcontrib>Le, Tien-Duy B.</creatorcontrib><creatorcontrib>Lo, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang, Thong</au><au>Oentaryo, Richard J.</au><au>Le, Tien-Duy B.</au><au>Lo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network-Clustered Multi-Modal Bug Localization</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>45</volume><issue>10</issue><spage>1002</spage><epage>1023</epage><pages>1002-1023</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>Developers often spend much effort and resources to debug a program. To help the developers debug, numerous information retrieval (IR)-based and spectrum-based bug localization techniques have been devised. IR-based techniques process textual information in bug reports, while spectrum-based techniques process program spectra (i.e., a record of which program elements are executed for each test case). While both techniques ultimately generate a ranked list of program elements that likely contain a bug, they only consider one source of information-either bug reports or program spectra-which is not optimal. In light of this deficiency, this paper presents a new approach dubbed Network-clustered Multi-modal Bug Localization (NetML), which utilizes multi-modal information from both bug reports and program spectra to localize bugs. NetML facilitates an effective bug localization by carrying out a joint optimization of bug localization error and clustering of both bug reports and program elements (i.e., methods). The clustering is achieved through the incorporation of network Lasso regularization, which incentivizes the model parameters of similar bug reports and similar program elements to be close together. To estimate the model parameters of both bug reports and methods, NetML employs an adaptive learning procedure based on Newton method that updates the parameters on a per-feature basis. Extensive experiments on 355 real bugs from seven software systems have been conducted to benchmark NetML against various state-of-the-art localization methods. The results show that NetML surpasses the best-performing baseline by 31.82, 22.35, 19.72, and 19.24 percent, in terms of the number of bugs successfully localized when a developer inspects the top 1, 5, and 10 methods and Mean Average Precision (MAP), respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2018.2810892</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5096-4834</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-5589 |
ispartof | IEEE transactions on software engineering, 2019-10, Vol.45 (10), p.1002-1023 |
issn | 0098-5589 1939-3520 |
language | eng |
recordid | cdi_ieee_primary_8306117 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Bug localization Clustering Computational modeling Computer bugs Debugging Information retrieval Localization Mathematical models Newton methods Optimization Parameter estimation Position (location) program spectra Regularization Spectra Task analysis |
title | Network-Clustered Multi-Modal Bug Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network-Clustered%20Multi-Modal%20Bug%20Localization&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Hoang,%20Thong&rft.date=2019-10-01&rft.volume=45&rft.issue=10&rft.spage=1002&rft.epage=1023&rft.pages=1002-1023&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2018.2810892&rft_dat=%3Cproquest_RIE%3E2307213953%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307213953&rft_id=info:pmid/&rft_ieee_id=8306117&rfr_iscdi=true |