Practical stabilization of locally linearizable systems
The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit const...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1628 vol.2 |
---|---|
container_issue | |
container_start_page | 1623 |
container_title | |
container_volume | 2 |
creator | Hirschorn, R.M. Aranda-Bricaire, E. |
description | The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given. |
doi_str_mv | 10.1109/CDC.1999.830256 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_830256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>830256</ieee_id><sourcerecordid>830256</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-8d5fc45fe117bbda255b8d9101aefdbb060d146177e277d911641cc9acc200d23</originalsourceid><addsrcrecordid>eNotj81KAzEYRQMqWNuuBVd5gRm_LzP5W8qoVSjYRfclvxBJOzLJZnx6BypcOHAPXLiEPCK0iKCfh9ehRa11qzpgXNyQrZYKlnSccRC3ZAWosWEMxT15KOUbABQIsSLyMBlXkzOZlmpsyunX1DRe6BhpHpc6zzSnSzDTImwOtMylhnPZkLtocgnbf67J8f3tOHw0-6_d5_Cyb5KStVGeR9fzGBCltd4wzq3yGgFNiN5aEOCxFyhlYFIuAkWPzmnjHAPwrFuTp-tsCiGcfqZ0NtN8ur7s_gBoJkY6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical stabilization of locally linearizable systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hirschorn, R.M. ; Aranda-Bricaire, E.</creator><creatorcontrib>Hirschorn, R.M. ; Aranda-Bricaire, E.</creatorcontrib><description>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780352506</identifier><identifier>ISBN: 0780352505</identifier><identifier>DOI: 10.1109/CDC.1999.830256</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Linear feedback control systems ; Mathematics ; Nonlinear control systems ; Nonlinear systems ; Open loop systems ; Stability ; State feedback ; Statistics</subject><ispartof>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.2, p.1623-1628 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/830256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/830256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hirschorn, R.M.</creatorcontrib><creatorcontrib>Aranda-Bricaire, E.</creatorcontrib><title>Practical stabilization of locally linearizable systems</title><title>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</title><addtitle>CDC</addtitle><description>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</description><subject>Control systems</subject><subject>Linear feedback control systems</subject><subject>Mathematics</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Open loop systems</subject><subject>Stability</subject><subject>State feedback</subject><subject>Statistics</subject><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEYRQMqWNuuBVd5gRm_LzP5W8qoVSjYRfclvxBJOzLJZnx6BypcOHAPXLiEPCK0iKCfh9ehRa11qzpgXNyQrZYKlnSccRC3ZAWosWEMxT15KOUbABQIsSLyMBlXkzOZlmpsyunX1DRe6BhpHpc6zzSnSzDTImwOtMylhnPZkLtocgnbf67J8f3tOHw0-6_d5_Cyb5KStVGeR9fzGBCltd4wzq3yGgFNiN5aEOCxFyhlYFIuAkWPzmnjHAPwrFuTp-tsCiGcfqZ0NtN8ur7s_gBoJkY6</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Hirschorn, R.M.</creator><creator>Aranda-Bricaire, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Practical stabilization of locally linearizable systems</title><author>Hirschorn, R.M. ; Aranda-Bricaire, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-8d5fc45fe117bbda255b8d9101aefdbb060d146177e277d911641cc9acc200d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Control systems</topic><topic>Linear feedback control systems</topic><topic>Mathematics</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Open loop systems</topic><topic>Stability</topic><topic>State feedback</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirschorn, R.M.</creatorcontrib><creatorcontrib>Aranda-Bricaire, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirschorn, R.M.</au><au>Aranda-Bricaire, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical stabilization of locally linearizable systems</atitle><btitle>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</btitle><stitle>CDC</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1623</spage><epage>1628 vol.2</epage><pages>1623-1628 vol.2</pages><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><abstract>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1999.830256</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.2, p.1623-1628 vol.2 |
issn | 0191-2216 |
language | eng |
recordid | cdi_ieee_primary_830256 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Control systems Linear feedback control systems Mathematics Nonlinear control systems Nonlinear systems Open loop systems Stability State feedback Statistics |
title | Practical stabilization of locally linearizable systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20stabilization%20of%20locally%20linearizable%20systems&rft.btitle=Proceedings%20of%20the%2038th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.99CH36304)&rft.au=Hirschorn,%20R.M.&rft.date=1999&rft.volume=2&rft.spage=1623&rft.epage=1628%20vol.2&rft.pages=1623-1628%20vol.2&rft.issn=0191-2216&rft.isbn=9780780352506&rft.isbn_list=0780352505&rft_id=info:doi/10.1109/CDC.1999.830256&rft_dat=%3Cieee_6IE%3E830256%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=830256&rfr_iscdi=true |