Practical stabilization of locally linearizable systems

The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit const...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hirschorn, R.M., Aranda-Bricaire, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1628 vol.2
container_issue
container_start_page 1623
container_title
container_volume 2
creator Hirschorn, R.M.
Aranda-Bricaire, E.
description The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.
doi_str_mv 10.1109/CDC.1999.830256
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_830256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>830256</ieee_id><sourcerecordid>830256</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-8d5fc45fe117bbda255b8d9101aefdbb060d146177e277d911641cc9acc200d23</originalsourceid><addsrcrecordid>eNotj81KAzEYRQMqWNuuBVd5gRm_LzP5W8qoVSjYRfclvxBJOzLJZnx6BypcOHAPXLiEPCK0iKCfh9ehRa11qzpgXNyQrZYKlnSccRC3ZAWosWEMxT15KOUbABQIsSLyMBlXkzOZlmpsyunX1DRe6BhpHpc6zzSnSzDTImwOtMylhnPZkLtocgnbf67J8f3tOHw0-6_d5_Cyb5KStVGeR9fzGBCltd4wzq3yGgFNiN5aEOCxFyhlYFIuAkWPzmnjHAPwrFuTp-tsCiGcfqZ0NtN8ur7s_gBoJkY6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical stabilization of locally linearizable systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hirschorn, R.M. ; Aranda-Bricaire, E.</creator><creatorcontrib>Hirschorn, R.M. ; Aranda-Bricaire, E.</creatorcontrib><description>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780352506</identifier><identifier>ISBN: 0780352505</identifier><identifier>DOI: 10.1109/CDC.1999.830256</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; Linear feedback control systems ; Mathematics ; Nonlinear control systems ; Nonlinear systems ; Open loop systems ; Stability ; State feedback ; Statistics</subject><ispartof>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.2, p.1623-1628 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/830256$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/830256$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hirschorn, R.M.</creatorcontrib><creatorcontrib>Aranda-Bricaire, E.</creatorcontrib><title>Practical stabilization of locally linearizable systems</title><title>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</title><addtitle>CDC</addtitle><description>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</description><subject>Control systems</subject><subject>Linear feedback control systems</subject><subject>Mathematics</subject><subject>Nonlinear control systems</subject><subject>Nonlinear systems</subject><subject>Open loop systems</subject><subject>Stability</subject><subject>State feedback</subject><subject>Statistics</subject><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KAzEYRQMqWNuuBVd5gRm_LzP5W8qoVSjYRfclvxBJOzLJZnx6BypcOHAPXLiEPCK0iKCfh9ehRa11qzpgXNyQrZYKlnSccRC3ZAWosWEMxT15KOUbABQIsSLyMBlXkzOZlmpsyunX1DRe6BhpHpc6zzSnSzDTImwOtMylhnPZkLtocgnbf67J8f3tOHw0-6_d5_Cyb5KStVGeR9fzGBCltd4wzq3yGgFNiN5aEOCxFyhlYFIuAkWPzmnjHAPwrFuTp-tsCiGcfqZ0NtN8ur7s_gBoJkY6</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Hirschorn, R.M.</creator><creator>Aranda-Bricaire, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Practical stabilization of locally linearizable systems</title><author>Hirschorn, R.M. ; Aranda-Bricaire, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-8d5fc45fe117bbda255b8d9101aefdbb060d146177e277d911641cc9acc200d23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Control systems</topic><topic>Linear feedback control systems</topic><topic>Mathematics</topic><topic>Nonlinear control systems</topic><topic>Nonlinear systems</topic><topic>Open loop systems</topic><topic>Stability</topic><topic>State feedback</topic><topic>Statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirschorn, R.M.</creatorcontrib><creatorcontrib>Aranda-Bricaire, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirschorn, R.M.</au><au>Aranda-Bricaire, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical stabilization of locally linearizable systems</atitle><btitle>Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304)</btitle><stitle>CDC</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1623</spage><epage>1628 vol.2</epage><pages>1623-1628 vol.2</pages><issn>0191-2216</issn><isbn>9780780352506</isbn><isbn>0780352505</isbn><abstract>The goal of this paper is to show that if a system is locally feedback linearizable and satisfies a suitable transversality condition then there exists a discontinuous state feedback that controls every initial state to an arbitrarily small neighbourhood of the origin. In this case an explicit construction of the stabilizer is given.</abstract><pub>IEEE</pub><doi>10.1109/CDC.1999.830256</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), 1999, Vol.2, p.1623-1628 vol.2
issn 0191-2216
language eng
recordid cdi_ieee_primary_830256
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
Linear feedback control systems
Mathematics
Nonlinear control systems
Nonlinear systems
Open loop systems
Stability
State feedback
Statistics
title Practical stabilization of locally linearizable systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20stabilization%20of%20locally%20linearizable%20systems&rft.btitle=Proceedings%20of%20the%2038th%20IEEE%20Conference%20on%20Decision%20and%20Control%20(Cat.%20No.99CH36304)&rft.au=Hirschorn,%20R.M.&rft.date=1999&rft.volume=2&rft.spage=1623&rft.epage=1628%20vol.2&rft.pages=1623-1628%20vol.2&rft.issn=0191-2216&rft.isbn=9780780352506&rft.isbn_list=0780352505&rft_id=info:doi/10.1109/CDC.1999.830256&rft_dat=%3Cieee_6IE%3E830256%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=830256&rfr_iscdi=true