Deep Neural Networks for Ultrasound Beamforming

We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2018-09, Vol.37 (9), p.2010-2021
Hauptverfasser: Luchies, Adam C., Byram, Brett C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2021
container_issue 9
container_start_page 2010
container_title IEEE transactions on medical imaging
container_volume 37
creator Luchies, Adam C.
Byram, Brett C.
description We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.
doi_str_mv 10.1109/TMI.2018.2809641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8302520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8302520</ieee_id><sourcerecordid>2117159145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-542f7c8506ed4ddf2131538d17a9ee868d84d4185369db9ce87e73470993c8293</originalsourceid><addsrcrecordid>eNpdkc1LHEEQxZugxNXkHgiEBS9eZq3qr-m-CMn6CSa5KOTWjNM1ZszM9Nq9o_jf27LrEj0VVP3qUfUeY18QZohgD69-Xsw4oJlxA1ZL_MAmqJQpuJJ_ttgEeGkKAM132G5KdwAoFdiPbIdba6WUOGGHx0SL6S8aY9XlsnwM8V-aNiFOr7tlrFIYBz_9QVWfW3073H5i203VJfq8rnvs-vTkan5eXP4-u5h_vyxqaXFZKMmbsjYKNHnpfcNRoBLGY1lZIqONN9JLNEpo629sTaakUsgSrBW14VbssaOV7mK86cnXNORrOreIbV_FJxeq1r2dDO1fdxsenM6-aBBZ4GAtEMP9SGnp-jbV1HXVQGFMjoM2QoLiOqP779C7MMYhv-c4YonKZt8yBSuqjiGlSM3mGAT3kobLabiXNNw6jbzy7f8nNguv9mfg6wpoiWgzNgK44iCeAZavjI0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117159145</pqid></control><display><type>article</type><title>Deep Neural Networks for Ultrasound Beamforming</title><source>IEEE Electronic Library (IEL)</source><creator>Luchies, Adam C. ; Byram, Brett C.</creator><creatorcontrib>Luchies, Adam C. ; Byram, Brett C.</creatorcontrib><description>We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2018.2809641</identifier><identifier>PMID: 29994441</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Array signal processing ; Artificial neural networks ; Beamforming ; Computer simulation ; Cysts ; Deep Learning ; Fourier Analysis ; Fourier transforms ; Frequency-domain analysis ; Humans ; image contrast enhancement ; Image Processing, Computer-Assisted - methods ; Liver ; Liver - diagnostic imaging ; Male ; Medical imaging ; Neural networks ; Neurons ; Noise levels ; off-axis scattering ; Phantoms, Imaging ; Scattering ; Sidelobes ; Training ; Ultrasonic imaging ; Ultrasonography - methods ; Ultrasound ; Ultrasound imaging</subject><ispartof>IEEE transactions on medical imaging, 2018-09, Vol.37 (9), p.2010-2021</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-542f7c8506ed4ddf2131538d17a9ee868d84d4185369db9ce87e73470993c8293</citedby><cites>FETCH-LOGICAL-c491t-542f7c8506ed4ddf2131538d17a9ee868d84d4185369db9ce87e73470993c8293</cites><orcidid>0000-0002-8211-2422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8302520$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8302520$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luchies, Adam C.</creatorcontrib><creatorcontrib>Byram, Brett C.</creatorcontrib><title>Deep Neural Networks for Ultrasound Beamforming</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.</description><subject>Adult</subject><subject>Array signal processing</subject><subject>Artificial neural networks</subject><subject>Beamforming</subject><subject>Computer simulation</subject><subject>Cysts</subject><subject>Deep Learning</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Frequency-domain analysis</subject><subject>Humans</subject><subject>image contrast enhancement</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Noise levels</subject><subject>off-axis scattering</subject><subject>Phantoms, Imaging</subject><subject>Scattering</subject><subject>Sidelobes</subject><subject>Training</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><subject>Ultrasound imaging</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1LHEEQxZugxNXkHgiEBS9eZq3qr-m-CMn6CSa5KOTWjNM1ZszM9Nq9o_jf27LrEj0VVP3qUfUeY18QZohgD69-Xsw4oJlxA1ZL_MAmqJQpuJJ_ttgEeGkKAM132G5KdwAoFdiPbIdba6WUOGGHx0SL6S8aY9XlsnwM8V-aNiFOr7tlrFIYBz_9QVWfW3073H5i203VJfq8rnvs-vTkan5eXP4-u5h_vyxqaXFZKMmbsjYKNHnpfcNRoBLGY1lZIqONN9JLNEpo629sTaakUsgSrBW14VbssaOV7mK86cnXNORrOreIbV_FJxeq1r2dDO1fdxsenM6-aBBZ4GAtEMP9SGnp-jbV1HXVQGFMjoM2QoLiOqP779C7MMYhv-c4YonKZt8yBSuqjiGlSM3mGAT3kobLabiXNNw6jbzy7f8nNguv9mfg6wpoiWgzNgK44iCeAZavjI0</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Luchies, Adam C.</creator><creator>Byram, Brett C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8211-2422</orcidid></search><sort><creationdate>20180901</creationdate><title>Deep Neural Networks for Ultrasound Beamforming</title><author>Luchies, Adam C. ; Byram, Brett C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-542f7c8506ed4ddf2131538d17a9ee868d84d4185369db9ce87e73470993c8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Array signal processing</topic><topic>Artificial neural networks</topic><topic>Beamforming</topic><topic>Computer simulation</topic><topic>Cysts</topic><topic>Deep Learning</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Frequency-domain analysis</topic><topic>Humans</topic><topic>image contrast enhancement</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Noise levels</topic><topic>off-axis scattering</topic><topic>Phantoms, Imaging</topic><topic>Scattering</topic><topic>Sidelobes</topic><topic>Training</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><topic>Ultrasound imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Luchies, Adam C.</creatorcontrib><creatorcontrib>Byram, Brett C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luchies, Adam C.</au><au>Byram, Brett C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Networks for Ultrasound Beamforming</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2018-09-01</date><risdate>2018</risdate><volume>37</volume><issue>9</issue><spage>2010</spage><epage>2021</epage><pages>2010-2021</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We investigate the use of deep neural networks (DNNs) for suppressing off-axis scattering in ultrasound channel data. Our implementation operates in the frequency domain via the short-time Fourier transform. The inputs to the DNN consisted of the separated real and imaginary components (i.e. in-phase and quadrature components) observed across the aperture of the array, at a single frequency and for a single depth. Different networks were trained for different frequencies. The output had the same structure as the input and the real and imaginary components were combined as complex data before an inverse short-time Fourier transform was used to reconstruct channel data. Using simulation, physical phantom experiment, and in vivo scans from a human liver, we compared this DNN approach to standard delay-and-sum (DAS) beamforming and an adaptive imaging technique that uses the coherence factor. For a simulated point target, the side lobes when using the DNN approach were about 60 dB below those of standard DAS. For a simulated anechoic cyst, the DNN approach improved contrast ratio (CR) and contrast-to-noise (CNR) ratio by 8.8 dB and 0.3 dB, respectively, compared with DAS. For an anechoic cyst in a physical phantom, the DNN approach improved CR and CNR by 17.1 dB and 0.7 dB, respectively. For two in vivo scans, the DNN approach improved CR and CNR by 13.8 dB and 9.7 dB, respectively. We also explored methods for examining how the networks in this paper function.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994441</pmid><doi>10.1109/TMI.2018.2809641</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8211-2422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2018-09, Vol.37 (9), p.2010-2021
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8302520
source IEEE Electronic Library (IEL)
subjects Adult
Array signal processing
Artificial neural networks
Beamforming
Computer simulation
Cysts
Deep Learning
Fourier Analysis
Fourier transforms
Frequency-domain analysis
Humans
image contrast enhancement
Image Processing, Computer-Assisted - methods
Liver
Liver - diagnostic imaging
Male
Medical imaging
Neural networks
Neurons
Noise levels
off-axis scattering
Phantoms, Imaging
Scattering
Sidelobes
Training
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Ultrasound imaging
title Deep Neural Networks for Ultrasound Beamforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Networks%20for%20Ultrasound%20Beamforming&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Luchies,%20Adam%20C.&rft.date=2018-09-01&rft.volume=37&rft.issue=9&rft.spage=2010&rft.epage=2021&rft.pages=2010-2021&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2018.2809641&rft_dat=%3Cproquest_RIE%3E2117159145%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117159145&rft_id=info:pmid/29994441&rft_ieee_id=8302520&rfr_iscdi=true