A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction

Reconstruction algorithms of compressively sampled data include solving a sparse approximation problem. This problem requires iterative search or optimization techniques. Software implementations are not fast enough for real-time applications of recovery algorithms and these algorithms should be imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-10, Vol.65 (10), p.3349-3361
Hauptverfasser: Fardad, Mohammad, Sayedi, Sayed Masoud, Yazdian, Ehsan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3361
container_issue 10
container_start_page 3349
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 65
creator Fardad, Mohammad
Sayedi, Sayed Masoud
Yazdian, Ehsan
description Reconstruction algorithms of compressively sampled data include solving a sparse approximation problem. This problem requires iterative search or optimization techniques. Software implementations are not fast enough for real-time applications of recovery algorithms and these algorithms should be implemented in hardware. This paper presents a low-complexity hardware for real-time reconstruction of compressively sensed signal using orthogonal matching pursuit algorithm. The main goal of this research is to provide a deterministic alternative to the random measurement matrix. The construction of this matrix is based on the connection between the parity check matrix of low-density parity-check (LDPC) codes and the measurement matrix of compressive sensing. For efficient hardware realization, a geometric approach to the construction of LDPC codes is used for matrix generation on the fly without requiring a lot of storage. Cyclic and binary structure of this matrix leads to the lower computational complexity and hardware cost in the reconstruction side. The described hardware has been implemented and evaluated on a virtex6 field-programmable gate array from Xilinx. Implementation results show that the proposed architecture has better performance in terms of hardware utilization. Moreover, the accuracy of the recovered signal is comparable with the previous works in which the random measurement matrix is used.
doi_str_mv 10.1109/TCSI.2018.2803627
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8301022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8301022</ieee_id><sourcerecordid>2117160131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5433d87717f253a52cef1c8949bbb9e8b9b2548b7d5c52a2763ccb8d9097c72a3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzRN8jiqc4Oh4OZzaNNbydiamXTO_XtXNny65-E758JHyD3QEQDVT8tiMRsxCmrEFOU5kxdkAEKolCqaX_Y506niTF2TmxhXlDJNOQzI2ziZ-31a-M12jb-uOyTTMtT7MmDS-JA8Y4dh41oXO2eTngoYo_vBZIFtdO1X8oHWt7ELO9s5396Sq6ZcR7w73yH5nLwsi2k6f3-dFeN5apnmXSoyzmslJciGCV4KZrEBq3Smq6rSqCpdMZGpStbCClYymXNrK1VrqqWVrORD8nja3Qb_vcPYmZXfhfb40jAACTkFDkcKTpQNPsaAjdkGtynDwQA1vTbTazO9NnPWduw8nDoOEf95xSlQxvgfmeBpIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117160131</pqid></control><display><type>article</type><title>A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Fardad, Mohammad ; Sayedi, Sayed Masoud ; Yazdian, Ehsan</creator><creatorcontrib>Fardad, Mohammad ; Sayedi, Sayed Masoud ; Yazdian, Ehsan</creatorcontrib><description>Reconstruction algorithms of compressively sampled data include solving a sparse approximation problem. This problem requires iterative search or optimization techniques. Software implementations are not fast enough for real-time applications of recovery algorithms and these algorithms should be implemented in hardware. This paper presents a low-complexity hardware for real-time reconstruction of compressively sensed signal using orthogonal matching pursuit algorithm. The main goal of this research is to provide a deterministic alternative to the random measurement matrix. The construction of this matrix is based on the connection between the parity check matrix of low-density parity-check (LDPC) codes and the measurement matrix of compressive sensing. For efficient hardware realization, a geometric approach to the construction of LDPC codes is used for matrix generation on the fly without requiring a lot of storage. Cyclic and binary structure of this matrix leads to the lower computational complexity and hardware cost in the reconstruction side. The described hardware has been implemented and evaluated on a virtex6 field-programmable gate array from Xilinx. Implementation results show that the proposed architecture has better performance in terms of hardware utilization. Moreover, the accuracy of the recovered signal is comparable with the previous works in which the random measurement matrix is used.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2803627</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Codes ; Complexity ; Compressive sensing ; Computational complexity ; deterministic ; Error correcting codes ; Hardware ; Iterative methods ; low-density parity-check codes ; Matching pursuit algorithms ; Matrix decomposition ; measurement matrix ; OMP ; Parity ; Real time ; Reconstruction ; Sparse matrices ; sparsity ; Time compression</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3349-3361</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5433d87717f253a52cef1c8949bbb9e8b9b2548b7d5c52a2763ccb8d9097c72a3</citedby><cites>FETCH-LOGICAL-c293t-5433d87717f253a52cef1c8949bbb9e8b9b2548b7d5c52a2763ccb8d9097c72a3</cites><orcidid>0000-0002-0425-4732 ; 0000-0001-8833-3747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8301022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8301022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fardad, Mohammad</creatorcontrib><creatorcontrib>Sayedi, Sayed Masoud</creatorcontrib><creatorcontrib>Yazdian, Ehsan</creatorcontrib><title>A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Reconstruction algorithms of compressively sampled data include solving a sparse approximation problem. This problem requires iterative search or optimization techniques. Software implementations are not fast enough for real-time applications of recovery algorithms and these algorithms should be implemented in hardware. This paper presents a low-complexity hardware for real-time reconstruction of compressively sensed signal using orthogonal matching pursuit algorithm. The main goal of this research is to provide a deterministic alternative to the random measurement matrix. The construction of this matrix is based on the connection between the parity check matrix of low-density parity-check (LDPC) codes and the measurement matrix of compressive sensing. For efficient hardware realization, a geometric approach to the construction of LDPC codes is used for matrix generation on the fly without requiring a lot of storage. Cyclic and binary structure of this matrix leads to the lower computational complexity and hardware cost in the reconstruction side. The described hardware has been implemented and evaluated on a virtex6 field-programmable gate array from Xilinx. Implementation results show that the proposed architecture has better performance in terms of hardware utilization. Moreover, the accuracy of the recovered signal is comparable with the previous works in which the random measurement matrix is used.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Codes</subject><subject>Complexity</subject><subject>Compressive sensing</subject><subject>Computational complexity</subject><subject>deterministic</subject><subject>Error correcting codes</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>low-density parity-check codes</subject><subject>Matching pursuit algorithms</subject><subject>Matrix decomposition</subject><subject>measurement matrix</subject><subject>OMP</subject><subject>Parity</subject><subject>Real time</subject><subject>Reconstruction</subject><subject>Sparse matrices</subject><subject>sparsity</subject><subject>Time compression</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwp-NyZmzRN8jiqc4Oh4OZzaNNbydiamXTO_XtXNny65-E758JHyD3QEQDVT8tiMRsxCmrEFOU5kxdkAEKolCqaX_Y506niTF2TmxhXlDJNOQzI2ziZ-31a-M12jb-uOyTTMtT7MmDS-JA8Y4dh41oXO2eTngoYo_vBZIFtdO1X8oHWt7ELO9s5396Sq6ZcR7w73yH5nLwsi2k6f3-dFeN5apnmXSoyzmslJciGCV4KZrEBq3Smq6rSqCpdMZGpStbCClYymXNrK1VrqqWVrORD8nja3Qb_vcPYmZXfhfb40jAACTkFDkcKTpQNPsaAjdkGtynDwQA1vTbTazO9NnPWduw8nDoOEf95xSlQxvgfmeBpIA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Fardad, Mohammad</creator><creator>Sayedi, Sayed Masoud</creator><creator>Yazdian, Ehsan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0425-4732</orcidid><orcidid>https://orcid.org/0000-0001-8833-3747</orcidid></search><sort><creationdate>20181001</creationdate><title>A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction</title><author>Fardad, Mohammad ; Sayedi, Sayed Masoud ; Yazdian, Ehsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5433d87717f253a52cef1c8949bbb9e8b9b2548b7d5c52a2763ccb8d9097c72a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Codes</topic><topic>Complexity</topic><topic>Compressive sensing</topic><topic>Computational complexity</topic><topic>deterministic</topic><topic>Error correcting codes</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>low-density parity-check codes</topic><topic>Matching pursuit algorithms</topic><topic>Matrix decomposition</topic><topic>measurement matrix</topic><topic>OMP</topic><topic>Parity</topic><topic>Real time</topic><topic>Reconstruction</topic><topic>Sparse matrices</topic><topic>sparsity</topic><topic>Time compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fardad, Mohammad</creatorcontrib><creatorcontrib>Sayedi, Sayed Masoud</creatorcontrib><creatorcontrib>Yazdian, Ehsan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fardad, Mohammad</au><au>Sayedi, Sayed Masoud</au><au>Yazdian, Ehsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>3349</spage><epage>3361</epage><pages>3349-3361</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Reconstruction algorithms of compressively sampled data include solving a sparse approximation problem. This problem requires iterative search or optimization techniques. Software implementations are not fast enough for real-time applications of recovery algorithms and these algorithms should be implemented in hardware. This paper presents a low-complexity hardware for real-time reconstruction of compressively sensed signal using orthogonal matching pursuit algorithm. The main goal of this research is to provide a deterministic alternative to the random measurement matrix. The construction of this matrix is based on the connection between the parity check matrix of low-density parity-check (LDPC) codes and the measurement matrix of compressive sensing. For efficient hardware realization, a geometric approach to the construction of LDPC codes is used for matrix generation on the fly without requiring a lot of storage. Cyclic and binary structure of this matrix leads to the lower computational complexity and hardware cost in the reconstruction side. The described hardware has been implemented and evaluated on a virtex6 field-programmable gate array from Xilinx. Implementation results show that the proposed architecture has better performance in terms of hardware utilization. Moreover, the accuracy of the recovered signal is comparable with the previous works in which the random measurement matrix is used.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2803627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0425-4732</orcidid><orcidid>https://orcid.org/0000-0001-8833-3747</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3349-3361
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_8301022
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation algorithms
Codes
Complexity
Compressive sensing
Computational complexity
deterministic
Error correcting codes
Hardware
Iterative methods
low-density parity-check codes
Matching pursuit algorithms
Matrix decomposition
measurement matrix
OMP
Parity
Real time
Reconstruction
Sparse matrices
sparsity
Time compression
title A Low-Complexity Hardware for Deterministic Compressive Sensing Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Complexity%20Hardware%20for%20Deterministic%20Compressive%20Sensing%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Fardad,%20Mohammad&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=3349&rft.epage=3361&rft.pages=3349-3361&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2803627&rft_dat=%3Cproquest_RIE%3E2117160131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117160131&rft_id=info:pmid/&rft_ieee_id=8301022&rfr_iscdi=true